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CHAPTER 1. Introduction

Anonymity refers to the state that an entity is not identified in the communications with oth-

ers. As discussed in [62], anonymous communication may have one or more of the following

properties: sender anonymity, receiver anonymity, and unlinkability. Sender anonymity means

that when a message is observed, the sender cannot be identified; receiver anonymity means that

the receiver cannot be identified. Unlinkability means that the relationship between the sender

and the receiver in the communication cannot be identified, even if sender anonymity or receiver

anonymity cannot be guaranteed. An anonymity mechanism may provide anonymity against one

type of threat but not against another type. For example, using a proxy between senders and

receivers may provide sender anonymity against the receiver and vice versa, but cannot provide

any anonymity against an eavesdropper who can observe all messages from and to the proxy.

Many Internet-based applications, such as web browsing, e-mail processing and peer-to-peer file

sharing, have included anonymity mechanisms as part of their security features. For example, a

simple proxy has been used in Anonymizer [7]. A mix [20] reorders outgoing messages to further

provide unlinkability against an eavesdropper. Onion routing [93] uses a set of Onion routers,

roughly a set of mixes, which increase rerouting path and thus enhance anonymity against eaves-

dropping. Crowds [73] uses rerouting of random length and makes user nodes be proxies for each

other. Because messages are forwarded multiple times before reaching the destination, an adver-

sary who observes a message can hardly tell whether the message sender is the initiator of the

communication or not.

There are two primary factors which influence the design of any anonymity system: (1) type

of available infrastructure and (2) type of application. The aforementioned systems either rely

on trusted infrastructure or use the services of peer-to-peer based forwarding systems. In both

types of anonymity systems, the infrastructure plays a crucial role. Thus unlike encryption and
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like routing, it is not enough just for the two end points (initiator and responder) to participate;

the entire infrastructure must participate for successful anonymous communications. In some

anonymity systems, the path is established by a centralized trusted entity and therefore the role

of an intermediate node is restricted to forwarding. In such systems, the centralized server makes

the routing decisions. On the other hand, some peer-to-peer based systems use the services of

untrusted peers for forwarding traffic. In such cases, the final path formed from the initiator to

responder is a result of independent routing decisions taken by intermediate forwarders. For

example, in Crowds like forwarding, the traffic is routed by the intermediate forwarders with

a certain forwarding probability and both the path length and the nature of the routing path is

dependent on the intermediate forwarders. Moreover, peer-to-peer systems are characterized by

frequent joins and leaves of peers resulting in significant amount of churn. Besides degrading

the quality of service, churn also makes these systems vulnerable to frequent path reconstructions

which in turn affects the anonymity of the system. Therefore, the routing primitives should be

adaptive to the inherent churn in such systems. By contrast, traditional mix-based systems (based

on the original Chaum mixes) rely on the services of static mixes which are always required to be

a part of the system.

The type of application for which anonymous infrastructure is needed also influences the de-

sign of the anonymous forwarding and routing protocol. Web browsing is one of the foremost ap-

plications for which anonymous communication systems like Crowds, Onion routing and Mixes

were designed. Since it is a low latency application, an inherent requirement of such anonymous

protocols is a service of high quality with low communication overhead. Consequently, neither a

long path length nor multi-routing based protocol designs are suitable for web-browsing. On the

other hand, rerouting based systems are not ideally suited for applications which involve large

data transfers . Consider the case of grid computing [94]. The existing approaches, when applied

to grid computing environment, will incur overheads that are too high to be acceptable. This is

because most grid computing applications involve transfers of very large amounts of data, and

because system efficiency is much more important for grid applications than for the others. For

example, a computing task in GriPhyN [43] may request data files of multiple gigabytes from

storage nodes. If a small number of proxies were used, the proxies would quickly become the
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bottleneck as the number of communications increases. Using rerouting of random length could

avoid having the bottlenecks, but will greatly increase network traffic and the processing times at

intermediate nodes, and thus significantly reduce the efficiency of the whole grid.

1.1 Emerging Research Challenges

Research in the area of traditional anonymous communication systems has been well studied.

However, emerging applications like distributed storage, Peer-to-Peer based distributed appli-

cations and grid-based applications have different requirements and privacy challenges which

cannot be directly solved using traditional anonymity protocols. While applications drive the

anonymity requirements, the type of available infrastructure influences the forwarding and rout-

ing characteristics at the intermediate forwarders. For example, rerouting based approaches are

not directly applicable to data grids which involve large amounts of data transfer. This is due

to the high overhead incurred. Again P2P-based anonymity systems must account for the free-

riding [33] problem inherent in such systems. Free-riding results in a very dynamic forwarding

infrastructure for such systems which affects availability and thereby anonymity. While incen-

tive mechanisms [5] can generally address such issues, the design of an incentive mechanism for

anonymity systems poses additional challenges. Finally, emerging distributed storage applica-

tions use a distributed hash table abstraction [91] for distributed storage of documents or files.

Such applications are vulnerable to adversarial attacks on the storage nodes due to information

leak from compromised routing tables and therefore require censorship resistance. A detailed

quantitative analysis of privacy leak from such distributed data structures can give us insights

into the design issues which impact privacy and enable us to design better structures. Our re-

search goal is to make efficient and reliable anonymous communications available to emerging

applications. In the next section, we outline the motivation and the research challenges addressed

in this thesis.
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1.2 Contributions of the Thesis

This thesis presents the design, analysis and experimental results of our proposed proto-

cols/designs. Parts of this thesis were previously published as [67, 68, 69, 65]. Our contributions

address the challenges mentioned in the previous section and can be summarized as follows:

1.2.1 Anonymous Data-transfer for Large Scale Data-intensive Applications

As mentioned earlier, rerouting based anonymity systems are not ideally suitable for data-

intensive applications due to the huge overhead that might be incurred. One such application

is transfer of data in Data-grids [36]. We have developed a novel lightweight 2-hop forwarding

protocol which achieves anonymity in grid transactions while incurring minimal overhead. To the

best of our knowledge, our work is one of the first that addresses anonymity for grid transactions.

We also compare the performance of the protocol with traditional multihop protocols in peer-

to-peer systems and analyze the degree of anonymity that can be achieved for various grid site

configurations.

1.2.2 Enhancing Anonymity through Incentives in P2P Systems

Peer-to-peer anonymity systems like Crowds [73] and Tarzan [37] which use re-routing to for-

ward the payload are vulnerable to two factors which directly affect the anonymity of the system:

(1) free riding of peers [33] and (2) random forwarding leading to frequent path reformations

in dynamic systems [99]. Free riding is a significant problem in peer-to-peer systems whereby

some nodes leave the system after using its resources and do not provide anything in return. In

an anonymity system, it affects the availability of forwarders and also influences the system size

which provides a measure for the anonymity set. Moreover, it results in frequent joins and leaves

by peers (churn), which leads to a significant number of path reformations when random forward-

ing is used by the intermediate forwarders. This makes the system vulnerable to certain types of

anonymity attacks, e.g. intersection attacks [99]. While the issue of peer availability for anonymity

systems has been addressed in previous research [35], we are not aware of any work which ad-

dresses the two issues, i.e. routing compliance and availability, within a single framework. We
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develop an efficient incentive mechanism for peer participation and routing compliance in P2P-

based anonymity systems. We use techniques from game theory to develop favorable routing

strategies corresponding to nash equilibria points and outline the implementation of a payment

mechanism which can be integrated with the incentive mechanism.

1.2.3 Privacy-leak in Distributed Hash Tables

Distributed Hash Tables [91, 64] have recently been proposed as efficient data structures for

search and storage systems. However, the structured nature of the DHTs makes them vulnerable

to censorship attacks on the storage nodes. For example, the routing table at a compromised node

in Chord gives information about the IP addresses of its fingers and their approximate range on

the identifier circle. In comparison, unstructured systems like Gnutella [40] are highly resistant

to censorship attacks because the routing tables do not maintain any state information. Although

privacy-preserving variants of distributed hash tables have been proposed [87, 24], there has been

no comprehensive study comparing the leak of privacy from routing tables for these distributed

data structures. We have developed an analytical model to compare different DHT designs on the

basis of their vulnerability to privacy leaks. Our model uses the information theoretic concept of

Entropy to quantify information leak from routing tables.

1.2.4 Enforcing Location Privacy through Access Control

P2P based distributed storage applications use indexes to improve search performance [58, 47,

95]. These indexes also make the systems vulnerable to location privacy leaks about the file servers

because they give a direct mapping between a file and its location. We propose a cryptography-

based access control mechanism to increase the reliability of search indexes, such that only autho-

rized users can generate the location. Our mechanism is different from previous approaches [89]

in that we address both reliability and location privacy.
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1.3 Dissertation Outline

The rest of the thesis is structured as follows. Chapter 2 outlines the basics of anonymity, in-

cluding definitions, anonymity metrics and measure of anonymity (Anonymity Set, Entropy). We

also include different attack scenarios and types of adversary model. This is followed by Related

work in Chapter 3. Chapter 4 outlines the design of a 2-hop fowarding protocol for grid comput-

ing. We validate the light-weight nature of the protocol through experiments, analyze the degree

of anonymity for different adversarial scenarios and compare its performance with other tradi-

tional multi-hop protocols designed for achieving end to end anonymity. Chapter 5 outlines an

incentive based anonymity protocol for peer-to-peer networks. We develop a game theoretic based

model for inducing peers to participate in forwarding packets for other nodes, generate nash equi-

libria points and show its feasibility for an anonymity system. We also outline the implementation

of a payment mechanism which can be integrated with the protocol. Chapter 6 outlines an analyt-

ical model for comparing different DHT designs on the basis of their vulnerability to information

leak from routing tables. The model uses the information theoretic metric of Entropy to quantify

information leak. We compare our approach with other existing work and conclude that under

different scenarios, different designs have better resistance to privacy leaks. Chapter 7 outlines

the design of a cryptographic protocol to enforce access control on file location in distributed Peer

to Peer storage systems. The protocol ensures availability and reliability of search indexes which

are used in DHT based systems. We analyze the effectiveness of the protocol through simulations

and also through a prototype implementation on the PlanetLab testbed. Finally, in Chapter 8, we

conclude the thesis and outline future directions.
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CHAPTER 2. Definitions and Assumptions

2.1 Preliminaries

In this section we introduce the reader to some preliminary concepts of anonymity. We first

define anonymity and then describe the different types of anonymity.

“Anonymity is the state of not being identifiable within a set of subjects, the

anonymity set.”

1. Sender Anonymity This refers to the state when a particular message is not linkable to any

sender and that to a particular sender, no message is linkable.

2. Recipient Anonymity This refers to the state when a particular message is not linkable to

any recipient and that to a particular recipient, no message is linkable.

3. Relationship Anonymity Relationship Anonymity corresponds to the case when it is un-

traceable who communicates with whom. Therefore it is not possible to link the sender

and receiver. Relationship Anonymity is therefore a weaker property than both Sender and

Recipient Anonymity.

4. Pseudonymity Pseudonyms are identifiers of subjects (senders and recipients). The use of

pseudonymity then refers to the fact that a subject is identified by a pseudonym. Pseudonymity

can be extended to groups (group pseudonymity) or it can also be transferable (transferable

pseudonym).
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Figure 2.1. Anonymous Communication Infrastructure

2.2 Anonymity Metrics

2.2.1 Size of Anonymity Set

According to the definition of anonymity, the subjects who maybe related to an anonymous

transaction constitute the anonymity set for that transaction. Figure 2.1 shows the Sender anonymity

set and Recipient Anonymity Set for the anonymous communication infrastructure. Therefore

larger the size of the anonymity set, better it is for Sender or Recipient anonymity. However, the

metric of Anonymity Set size does not take into account the probability distribution of the sub-

jects within the anonymity set, i.e. the probability that a particular subject is the sender or receiver.

Therefore the use of entropy to calculate the expected size of the anonymity set was proposed in

[81].

2.2.2 Entropy, Expected Size of Anonymity set and Degree of Anonymity

For a given distribution of probabilities, the concept of entropy provides a measure of infor-

mation content of the distribution. Shannon entropy of a random variable X is then given by:

H(X) = −
∑

x∈S

P(X = x)log2P(X = x), where S is the set of possible values that X can take. H(X)

reaches it’s maximum value when all states are equiprobable, that is if there is no indication what-

soever to assume that one state is more probable than another state.

Let N be the total number of subjects which can be linked to a transaction with a non-zero
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probability (pi > 0 ∀ i = 1, · · · , N). The effective size of the anonymity set is then defined as the

entropy H(X) of the distribution X of probabilities that link the subjects of the anonymity set to

the transaction.

We analyse the degree of anonymity achieved for different cases, where each case corresponds

to the amount of information that the adversary possesses and derive conditions for zero and total

anonymity. The degree of anonymity is defined as follows [90]:

d(Ω) = 1 −
H(X)max − H(X)

H(X)max
=

H(X)

H(X)max
=

H(X)aposteriori

H(X)apriori

(2.1)

where Ω is the anonymity set.

An alternative entropy formulation is min-entropy:

Hmin = −log2maxipi (2.2)

However, Shannon entropy formulation better captures the probability distribution than min-

entropy. We extensively use Shannon entropy formulation in our analytical models and experi-

mental analysis.

2.3 Adversary Model and Attacks

The adversary attack model can be broadly classified as outlined by Raymond [71]:

• Internal-External: An adversary can compromise communication mediums (external) and

mix nodes, recipients and senders (internal)

• Passive-Active: An active adversary can tamper messages, modify computations and ac-

tively control communication medium and other physical medium etc.; however, a passive

adversary can just passively listen to communication medium and can try to correlate mes-

sages, but cannot tamper them. A passive adversary model is a much more realistic model

than an active adversary model in most scenarios. However, even a passive adversary model

can be very effective, especially in scenarios where it is easy to correlate traffic.

• Static-Adaptive: A static adversary selects and compromises resources before the start of a

protocol; however, an adaptive adversary can dynamically select resources as the protocol

progresses.
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Some of the common anonymity attacks are Intersection Attacks, Timing Attacks, Correlation

Attacks, Predecessor Attacks [100]. We briefly outline Intersection Attack which is the primary

attack model addressed in our work [65]. In an Intersection attack, an attacker having informa-

tion about other what users are active at any given time can, through observations, determine the

endpoints of a connection. It is possible to get useful information about users by getting infor-

mation about different anonymity sets which are active at different times and then generating an

intersection of those sets.
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CHAPTER 3. Related Work

3.1 Anonymity research

3.1.1 Chaums MIXes

Initial research in anonymity and untraceability can be attributed to the seminal work done

by David Chaum. A number of protocols to thwart content correlation and causality correlation

attacks, such as Web-MIXes [12], ISDN-MIXes [61], Stop-and-Go-MIXes [48], and many others

have been based on Chaum’s anonymous e-mail solution: a network of MIXes [20]. A mix shuf-

fles a batch of messages together and outputs them in a random order. The sender and the mix

use public key cryptography to hide the correspondence between input and output messages: the

message to the mix is of the form, Enc{Km,{D,M}}, where Km is the public key of the mix, D is

the destination of the message and M is the payload. The mix decrypts the message, learns desti-

nation D and then sends the payload, M to D. Mixes can also be chained by using the encrypted

message as the payload of a message encoded for a second mix. Each mix decrypts, delays and

reorders the messages before relaying them. Mix-based approaches have high anonymity guar-

antees but suffer from high latency. The first widely used implementation of mix networks was

anonymous remailers, using PGP encryption in order to wrap email messages and deliver them

anonymously. They were followed by Mix-Master [3] and then MixMinion [27]. Chaum also

proposed the Dining Cryptographers Problem [21]. It creates an anonymous broadcast channel

without using cryptography as such, but it still provides information theoretic security guaran-

tees. Systems like Anonymizer [7] and APFS Unicast [80] use an intermediate proxy to forward

anonymous traffic. Since a high amount of trust is placed on the proxy, these systems are vulner-

able to failure if the proxy is compromised.
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3.1.2 Rerouting based Techniques

Onion Routing [93] and Crowds [73] are the most popular rerouting based alternatives and

several prototypes have subsequently been deployed using these primitives. Both these approaches

use single-path forwarding through intermediate routers to achieve anonymity. Onion routing

uses a layered onion-like data structure to encrypt the payload and forwards it through known

intermediate nodes. In Crowds, primarily designed for web-browsing, nodes forward web re-

quests to each other at random, executing a form of random walk. At each step the random walk

may probabilistically terminate and the current node then sends the request to the web server.

Tor [31], Tarzan [37] and Center-Directing and Label-Switching [101] are systems built on top of

Onion routing and Crowds routing primitives.

3.1.3 Peer to Peer Systems

Systems like MIXes and rerouting mechanisms like Onion Routing run into problems when

the size of the network scales beyond 100 nodes; especially due to management of membership

information about other nodes in the system. Peer to Peer networks were designed primarily with

scaling in mind. In file sharing, Freenet [26] was designed to provide anonymity to both publish-

ers and readers. Freenet nodes forward queries to neighbors, who then follow heuristics to try to

reach a node with the desired file or data. GNUNet [11] is similar to Freenet though it uses a differ-

ent forwarding algorithm. FreeHaven [28] was another similar mechanism but its design relied on

a pre-existing anonymous communication channel rather than implementing anonymity mecha-

nisms itself. Publius [97] and FreeHaven use similar strategies for achieving publisher anonymity.

While Publius splits the symmetric key used to encrypt and decrypt a document into n shares,

FreeHaven splits the document into n shares. Any k of the n peers must be available to reproduce

the key (in the first case) and the document (in the second case).

Other Peer-to-Peer networks aim to provide a generic anonymous communication infrastruc-

ture, similar to onion routing. MorphMix [75] constructs an onion routing path by recursively

selecting neighbors of the current mix nodes. Each node knows only about 6 other nodes, and

uses its neighbors to find other nodes to use as mix servers. MorphMix uses a collusion detection
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scheme, which is based on IP addresses. Tarzan also creates a peer-to-peer onion routing system.

Tarzan [37] addresses the collusion problem by using a restricted topology, where connections are

formed only between nodes in different domains. Some recent designs have been built on top

of structured peer-to-peer networks. Cashmere [104] uses anycast mechanism in Pastry [78] to

ensure resilience of onion routes to individual node failures.

Any efficient implementation of an anonymity system is highly dependent on infrastructure

support. It is not enough just for the two end points (initiator and responder) to participate; the

entire infrastructure must participate for successful anonymous communications. Peer-to-Peer

based anonymity systems are particularly vulnerable to non-availability of peers for forwarding

traffic due to free-riding. Free-riding is an inherent problem in such dynamic systems whereby

some nodes leave the system after using its services and do not provide anything in return. Incen-

tive and reputation-based mechanisms have been proposed to address this issue in P2P anonymity

systems.

3.2 Economics of Anonymity

The economic aspects of anonymity was first addressed in [4]. It outlined the reasons why

anonymity systems are hard to deploy and enumerated the incentives to participate for both

initiators and intermediate forwarders. Previous work in this area has treated protocol compli-

ance [30, 29] and availability separately [35]. We address both the issues within the same frame-

work. Reputation mechanisms were used to address the issue of compliance in MIX networks [29]

and remailers [30] respectively. Reputation-based schemes are based on feedback about nodes in

a system which are made through observations. As mentioned in [35], schemes based on system

wide monitoring are not ideally suited for anonymity systems. Moreover, an inherent problem

with a scoring or reputation mechanism is that nodes can collude with each other to increase their

score or reputation and therefore increase their probability of being selected in the forwarding

path. The work presented in [35] proposed the use of an incentive mechanism to ensure the

availability of forwarders in a fixed length forwarding system. Although it addresses the issue

of availability in forwarding-based anonymity systems, the proposed mechanism is limited to
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systems in which the identity of the intermediate nodes is known to the initiator. Incentive mech-

anisms for protocol compliant forwarding and routing have been proposed for both wired [5] and

wireless [19, 6, 17] networks. The hidden-action problem in routing was addressed in [34] and

an incentive mechanism was proposed to overcome the problem through the use of direct and

recursive contracts. Micro-payment based schemes were proposed in [103] and [18] to stimulate

cooperation in adhoc networks. However, these mechanisms are not ideally suited for anonymity

systems in which the identity of the initator must be hidden from other peers.

3.3 Anonymity in Structured Peer-to-Peer Networks

There have been some attempts at providing anonymity for structured overlays. As mentioned

earlier, AChord [44] attempts to improve recipient anonymity in Chord through the use of data

lookup instead of address lookup. Thus, the IP address of the storage node is not revealed in the

query reply. However, information leak from routing table entries cannot be prevented. Several

other studies [59, 25, 13] have focused on the issue of sender-anonymity in Chord. We aim at ana-

lyzing the effect of leak of information from routing tables on recipient anonymity. An analytical

framework for calculating information leak in the Chord protocol (with respect to the identity of

the sender) is presented in [59]. Neblo [25] proposes the use of imprecise routing tables for en-

hancing recipient anonymity. While it highlights the importance of information leak from routing

tables, the focus is on the Chord routing protocol and the design objective is obfuscating the infor-

mation content of routing tables. We try to analyze the effect of the DHT routing geometry on the

amount of information leak from routing tables. Anonymity in structured P2P networks was also

studied in [13]. An empirical entropy-based metric was developed to measure source-anonymity

in Chord. A routing extension was proposed which allows a tradeoff between anonymity and

performance. Agyaat [87] attempts to provide recipient anonymity through the use of a two-tier

hybrid organization in which the Chord structured overlay works together with a gnutella-like

overlay to route messages. Gnutella-like clouds are connected with one another by means of a

Chord ring.
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3.4 Other Privacy-preserving Communication Systems

There are numerous other ways through which anonymity can be achieved and also other

applications which require a certain degree of privacy. Since these protocols and applications

are orthogonal to our interests to some extent, we just provide a brief outline here. In addition

to unicast channels, anonymity can also be achieved through the use of group communications.

P5 [84] proposes a novel approach for mutual anonymity using broadcast channels. Hordes [85]

provides initiator anonymity using multicasting. A multicast group is formed by all the initiator

nodes. Initiators send requests to responders using Crowds or Onion routing, while the responder

multicasts the response to the group of initiators. Epidemic protocols like MuON [9] have also

been proposed to achieve anonymity in P2P systems where churn decreases the efficiency of the

system. The MuON protocol achieves high resilience and appreciable anonymity through the use

of an epidemic mechanism for disseminating information.
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CHAPTER 4. Anonymity in Static and Closed Distributed Environments - An

Anonymity Protocol for Grid Computing

In a traditional grid, entities trust each other as in a close community and thus do not make

extra effort to hide their identity in communications. In fact, an entity must be authenticated and

its identity be disclosed to its partners. As grid computing evolves, virtual organizations will

be increasingly dynamic and complex. Grid computing will be integrated into other forms of

distributed computing techniques such as peer-to-peer (P2P) networking [36]. For instance, in a

commercial application enterprises may be accessing resources residing at third-part computing

facilities, e.g. delegating a computation-intensive job or acquiring a large amount of data. Since

the third party could have significant findings about an enterprise activity if the enterprise identity

is disclosed, anonymous communication in such scenarios will be as important as other security

issues.

Many Internet-based applications, such as web browsing, e-mail processing and peer-to-peer

file sharing, have included anonymity mechanisms as part of their security features. For exam-

ple, a simple proxy has been used in Anonymizer [7]. A mix [20] reorders outgoing messages

to further provide unlinkability against an eavesdropper. Onion routing [93] uses a set of Onion

routers, roughly a set of mixes, which increase rerouting path and thus enhance anonymity against

eavesdropping. Crowds [74] uses rerouting of random length and makes user nodes be proxies

for each other. Because messages are forwarded multiple times before reaching the destination,

an adversary who observes a message can hardly tell whether the message sender is the initiator

of the communication or not.

The existing approaches, when applied to grid computing environment, will incur overheads

that are too high to be acceptable. This is because most grid computing applications involve
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Figure 4.1. An example of a grid of multiple virtual organizations(VOs).

transfers of very large amounts of data, and because system efficiency is much more important

for grid applications than for the others. For example, a computing task in GriPhyN may request

data files of multiple gigabytes from storage nodes. If a small number of proxies were used, the

proxies would quickly become the bottleneck as the number of communications increases. Using

rerouting of random length could avoid having the bottlenecks, but will greatly increase network

traffics and the processing times at intermediate nodes, and thus significantly reduce the efficiency

of the whole grid.

We have found that a distributed and highly efficient anonymity mechanism for grid computing can

be designed if one takes use of the trust existing among certain sets of entities in a grid. We call those

sets of entities trust sets. In a grid a trust set may form if the entities have had close collaborations

or if they belong to the same organization, which are typical in grid applications. In this chapter,

we present the design of an anonymous forwarding protocol based on trust sets. In this proto-

col, trust sets are managed by grid administration nodes. When an entity requests an anonymous

communication with an untrusted entity, another entity in the trust set of the requester will be

selected as the forwarder for this communication. If only requester or responder anonymity is

needed, the extra overhead incurred by the forwarding is roughly the cost of direct communica-

tion. If both types of anonymity are needed, the total overhead is roughly two times the cost of

direct communication.

This anonymous protocol is different from previous ones in that it provides controlled anonymity,
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Figure 4.2. Resource sharing policy at site 6 in the example in Figure 1.

i.e. the identity of an entity in a communication is hidden from potential adversaries but not from

some trustable peer entities. This type of anonymity cannot apply to many other Internet-based

applications because the trust relationship does not exist at all. One would think that such a so-

lution is trivial; however, it actually needs a careful design of trust management and an accurate

analysis of the anonymity that it can provide. There are more complicated issues such as trade-

offs between load balance and the anonymity in selecting a forwarder, or considering a small

probability that a trustable entity might be taken over by adversary.

This protocol provides the best defense against the ill intentions of some entities involved in

grid applications. It is not designed against eavesdropping and in that sense is not as strong as

mixing or rerouting, but it still increases the difficulty of traffic analysis. In some cases a grid

entity may not have trustable entities or only have a few to trust. Those cases are exceptional in

grid applications and can be handled by reserving some proxies as forwarders for those entities.

4.1 Resource Sharing in Grids

Resource Sharing A grid can be viewed as a distributed collaborative environment where a

group of producers and consumers participate in a virtual organization (VO) to achieve a common

task. A virtual organization may consist of more than one site or physical organization. There can

be a user domain and a resource domain associated with each site. A resource sharing policy may be

enforced to determine how those sites share computing time, storage, and other resources among

them. A single site or physical organization can participate in multiple VOs.

Consider the grid in Figure 4.2. Suppose that six sites decide to share their resources and
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Privacy Collaborative Privacy
from task required?
site

1 T1,T2,T3 No,Yes,No
2 T1,T2,T3 No,Yes,Yes
3 T1,T2,T3 No,Yes,No
4 T1,T2,T3 No,No,Yes
5 T1,T2,T3 No,No,Yes

T1 T2 T3

Site-1 1 0 1
Site-2 1 0 0
Site-3 1 0 1
Site-4 1 1 0
Site-5 1 1 0
Site-6 1 1 1

Figure 4.3. Privacy policy at site 6 and the VO membership matrix for the entire grid.

therefore form a virtual organization VO1. Meanwhile, sites 4, 5 and 6 form another virtual or-

ganization VO2 for achieving a different task, sharing another subset of their resources for that

task. We represent each virtual organization as VOk = {Entity set}{Taskk}. Thus, in this exam-

ple VO2 = {Site4, Site5, Site6}{T2}. The resource sharing policy can be defined at the entity level.

Figure 4.2 shows the entity level resource sharing policy for the user and resource domains at site

6.

Security, Privacy and Anonymity Security and privacy are critical to grid systems, of which

the typical security features are authentication and encrypted communications. Anonymity is an-

other important feature of privacy, and is desired by certain applications. For example, Internet

users who are concerned with censorship would like to publish or receive files without disclosing

their identity. In a commercial environment, anonymity may protect organizations from disclosing

their activities to their opponents. Grid applications usually invoke both local and remote job exe-

cutions. In case of remote executions, depending on the nature of the job and the relationship with

the remote site, the mapping between the job submitted and the site from where the job is submit-

ted may or may not be hidden from the remote side where the job is finally executed. Thus privacy

is a policy issue and is site specific. Figure 4.3 shows the privacy policy of site 6 and the VO mem-

bership matrix of the entire grid. In the membership matrix M, M[i][j] =






0 : Site − i /∈ VOj

1 : Site − i ∈ VOj
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4.2 Anonymity and Trust Model for Grid Applications

Anonymity has not been provided in grid applications, but will be desirable in certain appli-

cations when their use extends. Consider the grid application of “Molecular Modeling for Drug

Design”, in which molecules from a chemical database are screened for potential use as a drug.

This is both data and compute intensive. A job (formulated as a parameter sweep application),

when submitted to a grid, may involve data transfers from remote databases and execution at re-

mote sites. In the highly competitive pharmaceutical industry, a company would want to hide its

association with a particular drug design from its competitors to avoid restricted access to remote

resources. Even for the more generic case of enterprise grids (P2P grids) which use platforms

like XtremWeb [39] and Entropia [23], users submitting jobs have natural incentives for hiding

their identity and remaining anonymous. Thus, while authorization (and therefore disclosure of

identity) to some authority is required for submitting a job, strong incentives for remaining anony-

mous (and therefore hiding the identity of the user) to other grid entities also exist. In the long

run, we believe that anonymity will be necessary for developing large scale and interconnected

grids. The challenge is to efficiently handle anonymous communications in grid applications.

Trust is generally classified into identity trust and behavior trust [8]. Identity trust is con-

cerned with verifying the identity or authentication of an entity. Behavior trust, on the other hand

refers to the overall trustworthiness of an entity in a given context. For example, [8] uses the be-

havior trust model which is based on transactions in a grid computing environment. Moreover,

a trust relationship can be one-to-one, one-to-many, many-to-one or many-to-many and can be

symmetric or asymmetric ([42]).

The 2-hop forwarding protocol described in the next section assumes that the initiator site

routes the job request through the forwarder site and once the job is executed at the remote site,

the output data is sent back to the initiator through the forwarder site. Thus the initiator must

have a high level of trust on the forwarder site. This trust is neither identity nor behavior trust,

but is policy driven trust. Thus for example, if a site A has had a lot of remote job executions at B,

it does not necessarily mean that it can trust B to forward a job request to C without revealing A’s

identity to C.
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We use the following trust model in our protocol. A grid essentially consists of various virtual

organizations, which represent different trust domains. Thus a many-to-many and symmetric

trust relationships exist among the members of a VO. We use the term trust set for the members

of a virtual organization. In our trust model, we assume that if a site wants to send a job request

to a remote site (such that job ∈ Tk), then it can trust any forwarder in VO which corresponds to

Tk. Moreover, since both I and F belong to the same VO (w.r.t Tk), it is reasonable to assume that F

would be aware of the type of job submissions at site I. We use this trust model in our analysis.

We use a simplified trust model in which each trust set is a virtual organizations and therefore

each entity in a VO trusts every other entity. Other possible variants can include cases where each

trust set can have entities from different virtual organizations.

4.3 Two-Hop Forwarding Protocol

We use a two-hop forwarding protocol (figure 4.4) in which the initiator routes the job re-

quest (e.g. input data, executables) through an intermediate forwarder and the job output is for-

warded along the reverse path back to the initiator. We assume the existence of a trusted server

called the Trust Set Maintenance (TSM) server, which maintains and periodically updates the VO

memberships of the different entities in the grid. The TSM server generates the forwarding path

for the initiator of the job request. This function may be integrated into some grid service nodes,

such as job schedulers. The criterion for selecting the forwarder is described in details in the

analysis section.

The procedure of creating a forwarding path is as follows:

• Step 1: The initiator contacts the TSM server S for forwarder selection. We assume that the

initiator contacts a job scheduler to determine the identity of the responder.

• Step 2: The trusted server sends the forwarding path to I, which is encrypted with the public

key of I. (We assume the existence of a public key infrastructure.) A randomly generated

number n can be used to identify the transaction.

S → I : {n, F}KI

• Step 3: I sends the job request to F and also signs the job request message using a certificate

issued by a certificate authority for authentication. The job may consist of input data files,
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Figure 4.4. The 2-hop forwarding protocol.

executables etc.

I → F : {{Job, n, R}KF
}CI

• Step 4: F authenticates itself to R and forwards the job request on I’s behalf.

F → R : {{Job, n}KR
}CF

• Steps 5,6: The output data is forwarded back to the initiator through the forwarder.

R → F : {Output, n}KF

F → I : {Output, n}KI

We will show that the protocol works effectively in a passive, internal [71] threat model, in

which the adversary is from the responder site, e.g the administrator at the site or a intruder

who has acquired the administrator privilege. For each incoming job request, the adversary will

try to predict with a certain probability whether the site sending the request is the forwarder

or the actual initiator (note that the forwarding protocol is used by the initiator only when it

needs anonymity from the responder site). Moreover, the adversary may have partial or complete

knowledge of the VO memberships of all the virtual organizations in the grid and can use this

information to predict the Initiator anonymity set.
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4.4 Analysis of the Degree of Anonymity

We use an approach based on information theory [83] to measure the degree of anonymity

achieved for a given grid job transaction. For a given distribution of probabilities, the concept

of entropy provides a measure of information content of the distribution. Shannon entropy of a

random variable X is then given by: H(X) = −
∑

x∈S

P(X = x)log2P(X = x), where S is the set of

possible values that X can take. H(X) reaches it’s maximum value when all states are equiprobable,

that is if there is no indication whatsoever to assume that one state is more probable than another

state.

We analyse the degree of anonymity achieved for different cases, where each case corresponds

to the amount of information that the adversary possesses and derive conditions for zero and total

anonymity. The degree of anonymity is defined as follows [90]:

d(Ω) = 1 −
H(X)max − H(X)

H(X)max

=
H(X)

H(X)max

=
H(X)aposteriori

H(X)apriori

(4.1)

where Ω is the anonymity set.

4.4.1 Definitions and Notations

We define S to be the set of grid sites. Considering a grid of size n, S = {s1, s2...., sn}. Let T be

the total number of collaborative tasks in the grid. This is also equal to the total number of VOs

in the grid. We represent the VO membership of a site k as the set VO(k) for all tasks and VO(k,t)

for task t. VO′(k) represents the set of entities which are members of exactly the same VO(s) as k.

The VO membership matrix is represented as M, where M[i][j] ∈ {0, 1} ∀ 0 ≤ i ≤ n, 0 ≤ j ≤ T .

For example, in Figure 4.3, VO(3) = {1,2,4,5,6}, VO′(3) = {1} and VO(3, t3) = {1,6}. Ω is the set of

possible initiators of a job request. We call this the initiator anonymity set. Ψ is the set of possible

forwarders for a given initiator and a job request. We call this the Forwarder Set. We also use a

random variable X, which denotes the initiator for a given job request.
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Figure 4.5. The variation of degree of anonymity with size of anonymity set (n=100).

4.4.2 A Priori and A Posteriori Entropy

We evaluate the entropies before and after the receipt of a job request at the responder site and

analyse the degree of anonymity achieved for two extreme cases: (1) the responder site has infor-

mation on only it’s own VO membership; and (2) the responder site knows the entire VO mem-

bership, i.e. the matrix M. We also assume a uniform probability distribution over the anonymity

set.

1. Case 1: The responder site has the least information

In this case, the adversary (responder site) has membership information about the VOs to

which it belongs, but it does not know the VO membership of other entities. According to

the design of the protocol, a site uses a forwarder to route a job request only when it requires

anonymity from the responder site. Moreover, all sites which are members of the same VO

and collaborate for a common goal do not require anonymity from each other. Thus the

responder can eliminate only itself from the anonymity set and therefore |Ω| = n − 1, and
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P(X = s) = 1
n−1

, and then

H(X)apriori = −
∑

s∈Ω

P(X = s)log2P(X = s)

= log2(n − 1) (4.2)

After receiving the job request, the adversary gets to know the identity of the forwarder and

can possibly predict the collaborative task to which the job belongs (without loss of gener-

ality, we can assume that the responder can predict the task from the executables and/or

input data file sent by the initiator). Since the adversary has no information on the VO mem-

bership of F, it cannot predict the anonymity set and therefore for a large grid, a posteriori

entropy is approximately equal to the a priori entropy and complete anonymity is achieved.

H(X)aposteriori = log2(n − 2) (4.3)

d(Ω) =
H(X)aposteriori

H(X)apriori

=
log2(n − 2)

log2(n − 1)
≈ 1 (4.4)

2. Case 2: The responder site has the maximum information

In this case, the adversary knows the entire VO membership matrix M. Before observing the

job request, the responder can eliminate only those entities from the anonymity set which

belong to exactly the same VO(s) as the responder. Knowing the membership of F, it can
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derive the a posteriori anonymity set to be VO(F, Tk), where Tk is the task to which the job

belongs. Thus, a posteriori entropy is given by:

H(X)aposteriori = log2|VO(F, Tk)| (4.5)

d(Ω) =
H(X)aposteriori

H(X)apriori

=
log2|VO(F, Tk)|

log2(n − 1 − VO′(R))
(4.6)

We analyse the variation of the degree of anonymity for different grid configurations for a

given grid size. Figure 4.5 shows the variation of degree of anonymity with different sizes of

anonymity set for a given size of the VO′ membership set of R and a grid size of 100.

We have the following observations:

• The minimum degree of anonymity (d(Ω) = 0) corresponds to the case when the initiator is

a member of a virtual organization such that |VO(I, Tk)| = 1. This means that I has to use the

only other member as the forwarder for collaborative task Tk.

• The maximum anonymity (d(Ω) = 1) corresponds to the case when

1. There are exactly two virtual organizations, one corresponding to Tk and the other cor-

responding to some other collaborative task;

2. F is the only common member of both the VOs; and

3. |VO′(R)| = 0.

• The ratio of the the size of the VO membership set of F, the VO′ membership set of R and the

number of virtual organizations influences the degree of anonymity that can be achieved.

From Figure 4.5, we observe that a degree of anonymity in the range of (0.3-0.6) is achieved

for a grid which has many VOs of small size (|VO(F, Tk)| ≤ 20). For a given |VO′(R)|, the

anonymity increases as |VO(F, Tk)| increases. Intuitively we can say this observation is valid

because if the initiator is a member of a VO which has many members, the anonymity set is

larger and therefore a higher degree of anonymity can be achieved.
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4.4.3 Selection of the Forwarder and Possible Attacks

From the analysis in the previous section, we observed that the size of the VO to which the

initiator belongs w.r.t task Tk influences the degree of anonymity that can be achieved. Since in

our trust model, we assume that the initiator trusts a forwarder only if it belongs to the same VO

which corresponds to the collaborative task Tk, the selection of the forwarder is limited to the same

VO. The selection of the same forwarder repeatedly for job request routing and data forwarding

can lead to load imbalance and generation of hotspots. On the other hand, a random selection of

the forwarder can lead to intersection attacks [84]. In an intersection attack, if the adversary knows

that the initiator is in two different sets A and B, then the anonymity of the initiator is reduced to

A ∩ B. Moreover, a site which is a member of several VOs has a very high probability of being

selected as the forwarder. Thus the selection of the forwarder is a tradeoff between load balance

and higher degree of anonymity. Figure 4.7 shows the three different cases described above.

4.5 Performance Evaluation

We use a grid simulator (written in Java) to evaluate the performance of the 2-hop forwarding

protocol. We use the BRITE [56] topology generator to generate a 2-tier (WAN,LAN) grid archi-

tecture containing 100 sites. A file size of 1 GB and link bandwidth varying between 0.1 and 10

Gbps is used. We use data transfer latency and bandwidth consumption as metrics for evaluating
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Figure 4.8. Degree of anonymity achieved on a per transaction basis.

the overhead associated with the protocol as compared to the case when initiator anonymity is not

required. Note that system overhead at the forwarders is roughly proportional to the bandwidth

consumption.

In our simulations we generate random transactions, where each transaction is the routing of a

job request from the initiator to the responder through a forwarder and the transfer of output data

from the responder to the initiator through the forwarder. For ease of implementation, we assume

that a remote job is executed at the responder in it’s entirety. For each transaction we measure the

degree of anonymity, the file transfer latency and bandwidth consumption. We only consider the

transfer of the output data from the responder to the initiator in our calculations.

4.5.1 Degree of Anonymity, Data Transfer Latency and Bandwidth Consumption

Figure 4.8 shows the degree of anonymity/transaction for a total of 100 transactions (grid

configuration consists of 100 sites and 15 VOs, where each VO contains 3-8 sites) using the 2-hop

forwarding protocol when the adversary has the maximum information. We observe that even when

the adversary has the maximum information (this corresponds to the worst case for the initiator),

d(Ω) lies in the range 0.2-0.6, with an average of 0.3777. Using information theory terminology, we
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can say that on an average, even in the worst case, about 40% of the bits of the initiator’s identity

are hidden from the adversary (responder).

We observe that for output files of size 1 GB, both file transfer latency and bandwidth con-

sumption increase by about a factor of 2. Thus this protocol is applicable for grid systems that

require anonymity but can only accommodate modest overhead in achieving initiator anonymity.

4.5.2 Comparison with Multi-hop P2P Forwarding Protocol

In this section, we compare our protocol with a multi-hop forwarding protocol. We first outline

some of the core functional differences between P2P and Grid, which influences the design of any

forwarding protocol.

1. A grid consists of trust domains and therefore anonymity would normally be required from

untrusted entities. This is different from traditional P2P where trust sets/domains do not

exist and every peer node requires anonymity from every other peer node.

2. A peer to peer network is generally associated with file downloads where files are relatively

small in size. Thus a file request does not provide any information about the initiator. In a

grid, on the other hand, each virtual organization is associated with a collaborative task and

therefore it might be possible to map a job request to a particular virtual organization, and

thus this information can be used by the adversary in reducing the size of the anonymity set.

Figure 4.9 shows a k-hop forwarding protocol where k − 1 intermediate forwarders are used.

We assume that an intermediate forwarder can be compromised with a certain probability. We

compare our protocol with the Crowds [74] anonymity system.

In Crowds, the probability that I is the initiator (such that I occupies the 0th position and the

first collaborator occupies any position ≥ 1) is given by P(X = I) =
n−pf(n−c−1)

n
, where n is the
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Table 4.1. Comparison of degree of anonymity.

No. of entities Degree of Anonymity
2-hop Crowds

40 0.99291 0.972287
80 0.997085 0.965869
120 0.998234 0.96222
160 0.998755 0.959724

total number of entities, pf is the probability of forwarding by an intermediate forwarder and c is

the total number of collaborators. Using (1), we calculate the degree of anonymity as:

d(Ω) = −[P(X = I)log2P(X = I)

+(1 − P(X = I))log2
1 − P(X = I)

n − 1
]/log2n

= [
n − pf(n − c − 1)

n
log2

n

n − pf(n − c − 1)

+
pf(n − c − 1)

n
log2

n(n − 1)

pf(n − c − 1)
]/log2n

Table 4.1 compares the degree of anonymity achieved in our 2-hop protocol with that of the

Crowds protocol (we use c=0 and pf=0.9) for the case when the adversary has the least infor-

mation. As predicted, the anonymity of the 2-hop protocol is much stronger because the 2-hop

protocol uses a trusted forwarder, which has a negligible probability of being compromised.

4.6 Summary

We have studied a new anonymity approach for grid computing and designed the 2-hop

anonymity protocol. Based on the existing trust in grid application, this protocol is more efficient

and stronger than the existing protocols. The degree of anonymity is quantitatively analyzed and

the efficiency confirmed by our simulation. Nevertheless, the study is limited to cases that trust

relationship can simply be derived from virtual organization membership. With a more practical

and complicated trust model, which has not been well studied for grid computing, this protocol

could be enhanced by considering varying trust levels, the possibility of attacks to trusted sites,

and more trade-offs between anonymity and load balance.
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CHAPTER 5. Dynamic Peer-to-Peer Infrastructures and their Effect on Anonymity

Many anonymity protocols and systems have been developed in recent years to support anony-

mous communications (initiator anonymity, responder anonymity or unlinkability). Most of those

systems assume some forwarding insfrastructure, e.g. trusted forwarding servers or a large set of

P2P forwarding nodes. Nevertheless, there lacks research on the insfrastructure itself. It is not

a trivial issue: The high operational cost of trusted infrastructure has resulted in the commercial

failure of such systems, e.g. the Freedom Network [41]. P2P-based forwarding systems [73, 37]

are more commercially viable because they use unreliable and untrusted forwarding nodes, and

has the advantage of using non-centralized forwarding nodes. However, P2P-based forwarding

systems are affected by the churn problem, i.e. the frequent leaves and joins of nodes.

5.1 Effect of Churn on Anonymity

Churn is the continuous process of arrival and departure of peers in a dynamic P2P network.

Existing studies of file-sharing systems use a node’s session time and lifetime as the primary

metrics of churn. A node’s session time is the elapsed time between it joining the network and

subsequently leaving it. A node’s lifetime is the time between it entering the network for the first

time and leaving the network permanently. It has been observed [76] that median session times

are of the order of tens of minutes and median lifetimes of the order of days. It is common in P2P

systems because of free riding [33], a scenario that many nodes join a P2P system for a short time

to enjoy its benefit but not to provide the expected service. There are two negative consequences

for P2P-based forwarding systems: It affects the availability of forwarding nodes, which reduces

the size of anonymity set; and it forces frequent reformations of forwarding paths, which make

the system vulnerable to intersection attacks [99].
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5.2 Can Incentive Mechanisms Help?

To address the churn problem, incentive mechanism has been introduced to induce P2P nodes

to provide stable service [35]. Nevertheless, an incentive mechanism for anonymous forwarding

must consider the quality of anonymity beyond the stability of service. In a simple incentive mech-

anism, a forwarder may align its routing decisions to maximize its local interests; for example, to

minimize communication costs. Additionally, the churn problem may only be alleviated – even

with incentive, new nodes may continue to join and old nodes may leave in typical P2P systems.

The problem of frequent forwarding path reformation still exists and should be considered in the

design of the incentive mechanism.

In this chapter, we describe an incentive mechanism that induces the forwarders to make for-

warding decisions aligned with the quality of initiator anonymity. The objective is achieved by

binding the incentive received by a local node with the quality of initiator anonymity at the sys-

tem level – a local node may maximize its interests by using a routing strategy aligned with the

goal of anonymity. To have a sound foundation, we use game theory to design and analyze the for-

warding strategy. We also propose payment-based incentive mechanism that keeps the anonymity

of involved parties.

5.3 Incentive-based Forwarding and Routing Model

5.3.1 Motivation and Design Objectives

P2P and forwarding-based anonymity systems are primarily distinguished by their routing

and forwarding infrastructure. In Onion routing [72] and MIX-based systems [20], the routing

is done before the forwarding and therefore a forwarder merely performs the forwarding. In

Crowds [73], a forwarder makes the routing decision. There is a hidden-action problem [34], i.e.

the actions of the forwarders are hidden from the initiator and the quality of the path is decided

by the decisions of the forwarders, which is not necessarily aligned with the quality of anonymity.

We believe that a properly designed incentive mechanism is required to ensure appropriate for-

warding and routing of packets in such systems. Designing such a mechanism for an anonymity
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system, however, is challenging because the mechanism itself cannot leak the identity information.

Intersection attack is a serious concern for anonymity systems that are used by applications

with recurring activities; for example, those using HTTP, FTP, NNTP or raw sockets [98]. In those

applications, an initiator usually makes repeated connections to a set of specific responders. The

reformations of the forwarding path, which can be caused by frequent node joins and leaves, will

increase the chance of exposing the initiator and the responder to the intersection attacks. In an

intersection attck, the attacker observes the intersection of the sets of active nodes at different

times and may find out the initiator or responder by reducing the intersection set.

The availability of forwarders has a strong impact on the success rate of intersection attack. In

a P2P system, the availability of a peer node can be expressed as the ratio of the sum of its sessions

times to its lifetime, where the lifetime is from the time of the initial entry of the peer node into

the system to the time of its final departure, and a session time is the time between the arrival and

the departure during a single session [76]. Consider the anonymous forwarding from an initiator

I to a responder R. The higher the availability of a peer node, the higher the probability of it being

selected as a forwarder. If a different set of forwarders are selected for each recurring connection

between I and R, the probability of an successful intersection attack increases. In other words,

if F1,F2,...., Ft are the set of all forwarders involved in the anonymous forwarding from I to R,

then one should minimize this metric: Q = |
⋃t

i=1 Fi|. Therefore, two conditions are desired in the

systems we are concerned: (1) a relatively static set of intermediate nodes, and (2) stable selection

of forwarders for all connections between I and R. The first condition is related to the availability

of nodes, the second is concerned with the routing decision at each intermediate node.

Our goal is to design an incentive mechanism that not only induces peer nodes to provide sta-

ble forwarding service but also encourage them to make routing decisions aligned with the system

objective of providing anonymity. We assume that the peer nodes are untrusted and unreliable in

general. We quantify the problem as follows: Let π = {π1, π2 · · ·πk} be the set of k recurring con-

nections between I and R and let L denote the average length of forwarding paths between I and

R. We define the path quality of π, denoted by Q(π), as L
||π||

where ||π|| represents the size of the

forwarder set1. The system objective is to maximize Q(π) by minimizing ||π||.
1L is used to normalize the forwarder set size for a given average path length.
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5.3.2 Outline of Incentive Mechanism

We model the system as a network of N nodes which participate in anonymous forwarding of

data packets. Each node s maintains information about a fixed number d of neighbors which can

be used as potential forwarders. This neighbor set is denoted by D(s) (for a detailed description

of the system, we refer the reader to the corresponding technical report [66]). When an initiator

I decides to set up a connection to a responder R, it uses the following mechanism. It makes a

commitment to pay an amount Pf to any intermediate forwarder, per forwarding instance (for-

warding benefit). In addition it also decides to pay a total shared benefit (routing benefit) equal

to Pr to all the forwarders. Thus if a forwarder participates in m forwarding instances, its benefit

is mPf + Pr

||π||
. The idea of separating the total benefit into routing and forwarding components

serves the following purpose. The forwarding benefit induces availability of nodes because even

if a forwarder makes a random routing decision, it still stands to gain by just participating in

the forwarding process. The routing benefit induces the nodes to make routing decisions which

are aligned with the system objective of minimizing ||π||.2 This can be achieved by making non-

random routing decisions. Note that the routing benefit induces an implicit cooperation among

forwarders. For example, in Figure 5.1, node X is not available for forwarding in π2; consequently

its forwarding benefit is smaller than the scenario in Figure 5.2. Moreover, the routing benefit for

each forwarder is reduced from Pr

8
to Pr

3
. Thus the utility function must be designed in such a way

2Note that we are basically concerned with the forwarder set for appropriate path lengths. The system objective is
to ensure a minimum size forwarder set for path lengths which are appropriate for anonymity systems. For example in
Crowds, tweaking the value of forwarding probability appropriately results in appropriate path lengths.
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that in trying to maximize their utilities, nodes take forwarding and routing decisions which are

aligned with the system objective.

We next define the utility function which is used by a forwarder X to select the next hop on

the path from I to R. Let qe be the quality3 of the forwarding edge e = (X, Y) from X to Y on some

path ∈ π and C be the sum of participation cost and forwarding cost (to Y) incurred by X. From a

system perspective, we would want that a forwarders utility be aligned with the global objective,

i.e. its utility should increase if it selects a high quality edge. We therefore define the utility for a

forwarder X as

UX(Y) = Pf + qePr − C (5.1)

Note that in trying to maximize its utility, X selects high quality forwarding edges which in turn

increases its payoff due to a decrease in ||π||. Thus this utility model captures the effect of local

decision making on the final payoff to a forwarder and aligns its interest with the system objective.

An intermediate forwarder X decides to participate or not participate in forwarding and routing

of the payload on the basis of its utility. It calculates its utility corresponding to each neighbor g ∈

D(X) and selects the neighbor which gives it the maximum utility as the next hop. Ties are broken

by selecting a neighbor with a higher quality. Note that since the identity of the intermediate

nodes (except first hop) is not known to the initiator, the establishment of the forwarding path is

based on propagation of contract information (Pf and Pr) through the intermediate nodes (Note

that both Crowds like probabilistic forwarding and hop-distance based forwarding are applicable

to our model). Finally after R receives the payload, it sends back a confirmation through the

reverse path. Each intermediate forwarder also includes path informtion which is then used by I

to recreate the path and validate it. After evaluating the path quality, the initiator uses a central

entity (bank) to make payments to the forwarders. Note that although the identity of R is known

to the intermediate nodes, the identity of I is not leaked and therefore the system achieves initiator

anonymity. The payment is made by I only after all the connections in π are completed. Details

about path quality evaluation and payment mechanism can be found in the technical report [66].

For the initiator, a high benefit corresponds to a low value of ||π|| (such that A(||π||)4 increases with
3We introduce the notion of edge quality in the context of path reformations in section 5.3.3.
4We use A(.) as a function for quantifying the anonymity.
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Connection id Predecessor Successor
cid X Y

Table 5.1. History profile at node s.

decrease in ||π||) and the cost it incurs is equal to the payment it makes to the forwarders. Therefore

UI = A(||π||) − ||π||Pf − Pr (5.2)

Relationship between forwarding and routing benefits: A high value of Pf increases the

probability of peer participation in the forwarding process. A high value of Pr gives a higher

weightage to the benefit and this results in a higher profit for a forwarder. Since a high benefit

corresponds to a high quality path, a high value of Pf results in the formation of high quality

paths between I and R. Thus depending on its anonymity requirements, the initiator can select

appropriate values for Pf and Pr. Note that the ratio of Pf and Pr also affects the decisions taken

by the forwarders. If Pr = τPf, then a small value of τ would induce nodes to forward traffic;

however, it may not align their routing decisions to the system objective. On the other hand a

high value of τ will induce nodes to make effective forwarding and routing decisions.

5.3.3 Edge Quality

Connection history. Each node stores history information about connections passing through

it. Thus if a node s lies on a path πi with connection identifier cid, it stores the correspond-

ing predecessor and successor hops as shown in Figure 5.1. The history information at s for

the kth connection, represented as Hk−1(s), consists of all outgoing edges from s which lie on

π1, π2, · · · , πi, · · · , πk−1. Note that by using the predecessor information, a node can differentiate

between outgoing edges for two different positions on the same path (e.g. if node s occupies two

different positions on πk).

Availability of neighbors. Each node also stores availability information about its neighbors.

In the absence of a centralized entity for collecting availability information, each peer calculates

availability of its neighbors using its own observations. A peer uses active probing [92] to monitor
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its neighbors. Mechanisms based on active probing have been used to estimate churn in peer-to-

peer systems. We use a methodology similar to [16] to estimate availability. When a peer first joins

the system, it initializes the session time of each of its neighbors to 0. At the start of each probing

period a peer s checks the liveness of each neighbor. If the neighbor is alive, its session time ts is

updated as tnew
s = told

s + T , where T is the probing time period. If a new neighbor is found, its

session time is updated as tnew
s = rand(0, T) where rand(0, T) is a uniformly distributed random

value in the range (0, T). Finally availability of a neighbor u, u ∈ D(s) is calculated as α(u) =

ts(u)∑

v∈D(s)

ts(v)
. Thus a neighbor with a higher observed session time has a higher availability. This is

in accordance with observed session times of peers in peer-to-peer file sharing systems, which is

modeled using a pareto distribution [53]. We represent the availability of a node v as observed by

s as αs(v) s.t. 0 ≤ α ≤ 1

Determining edge quality. We now outline a local mechanism for determining the quality of

an edge at a node. Consider a node s which lies on πk. Let D(s) be the neighbor set of s. s calculates

the quality of each outgoing edge, q(s, v) using a procedure which takes as inputs v, Hk−1(s)

and αs(v). Given an edge (s, v), s looks up its history information Hk−1(s) (path information

corresponding to π1, π2 · · ·πk−1) for any entry corresponding to (s, v). The ratio of the number of

entries corresponding to (s, v) and the maximum possible entries (k−1) is called its selectivity and

represented as σ(s, v). Weights ws and wa are assigned to selectivity σ(s, v) and availability α(v)

respectively such that ws + wa=1. Finally, the edge quality is calculated as q(s, v) = wsσ(s, v) +

waα(v). The weights ws and wa signify the relative importance of selectivity and availability.

A high value of wa signifies a higher importance to the availability of the forwarders, with the

objective that these forwarders would be available for forwarding for future connections. A high

value of ws on the other hand signifies higher importance for past history. Note that the edge

quality of the last edge in the path πk is always 1 because it ends in R. Note that ws and wa are

system parameters which are set depending on the anonymity requirements of the system. The

amount of history information stored at a node also influences the quality of the edge. The quality

of a path πk is then given by the sum of the qualities of the individual edges. We next show how

incentive based non-random routing leads to reduction in path reformations.
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Proposition 1. Incentive based non-random routing by intermediate nodes leads to reduction in path

reformations when compared with random routing.

Proof. Consider an edge e = (a, b) on path πk. Let X be a random variable such that

X =






0 : if e ∈
⋃i=k−1

i=1 πi

1 : otherwise

We need to show that E[X] for random forwarding is greater than E[X] for utility based non-

random forwarding. If random forwarding is used, then E[X] ≥ N−(k−1+1)
N

= 1 − k
N

. Since

k << N,E[X] → 1. In the case of utility based forwarding, a new edge is added only if there

is no existing edge in
⋃i=k−1

i=1 πi. Let the probability that an edge ∈ πi is available in πk be pi.

Then E[X] = (1 − p1)(1 − p2) · · · (1 − pi) · · · (1 − pk−1) ∀ 0 < ws, wa < 1. Note that since wa > 0,

pi → 1 as i → k. Consequently E[X] ≈ 0. From equation 5.1, Ua(b) increases with an increase in

q(a, b) and therefore a rational forwarder would always try to select high quality edges which in

turn leads to low path reformations.

5.3.4 Forwarding and Routing Strategy

We model the forwarding and routing mechanism as a finite multi-stage game [38] where the

peers are the players. Consider a system containing N peers represented by the set V = {1, 2 · · ·N}.

A nodes forwarding and routing strategy space SS is the set of all nodes in the system (except it-

self) along with the NULL entity, which corresponds to the case when a node does not participate

in the forwarding path. Therefore SSi = {1, 2, · · · , i−1, i+1, · · · , N,NULL}. The strategy profile of

node i is represented as {Si, S−i} where Si and Si−1 represent the strategies of i and other nodes re-

spectively. For a path π, the strategy profile of the set of nodes is therefore given by SP =
⋃N

i=1{Si}.

Figure 5.3 shows an example of a game tree, where at each stage a node has three choices; a) not

participate in forwarding, b) forward and route randomly, c) forward and route non-randomly.
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Forward + Route
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Node 1
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Node N

Figure 5.3. Game tree. A peer takes one of the three strategies: (1) does not participate in
forwarding (Drop), (2) forwards with random routing (Forward), and (3) forwards with non-
random routing (Forward+Route).

Note that the primary objective of an adversary in an anonymous forwarding system is to iden-

tify the end points of a communication and therefore its routing decision is not aligned with any

economic incentive. We model an adversary’s routing strategy as random routing. Note that the

main objective of an adversary is to break initiator anonymity; therefore it is not concerned about

the incentive. Our main objective here is to ensure that there is an equilibrium in the strategies for

the selfish nodes (those who want to obtain maximum income) and in doing so the availability of

nodes in the system increases. This in turn affects the anonymity of the system.

We first outline some game-theory basics. A Dominant Strategy [38] for a player i is a strategy

which gives it an optimal utility irrespective of the strategies taken by other players. A Nash

Equilibrium [38] represented as {S∗
i , S

∗
−i} is a strategy profile in which each players utility is optimal

given that the other players have also played their optimal strategies. An equilibrium is a weaker

property than a dominant strategy. Finally, a Subgame Perfect Nash Equilibrium (SPNE) [38] is a

special case where irrespective of the past, playing the assigned strategies from the current stage

is still an equilibrium.
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5.3.4.1 Cost Model

The costs incurred by peers includes the following: a) Participation cost and b) Transmission

cost. Any participating peer incurs a certain cost which depends on the nature of the application.

A number of internet protocols including HTTP, FTP, NNTP and raw sockets etc. are characterized

by a recurring traffic pattern [98] and therefore any client application which uses these protocols

is vulnerable to path reformations. Consequently our cost model should be generic and must not

be limited to any particular application. The cost of participation therefore includes the cost of

running a software associated with a particular application for a peer session. This cost is repre-

sented as Cp. For the initiator, the participation cost is equal to the sum of payments that it makes

to the intermediate forwarders. The transmission cost for a peer is associated with forwarding the

payload to the next hop and is represented as Ct. If the payload size is b and per unit transmission

cost to the next hop is l, then Ct = bl. We ignore the cost of transmitting control packets which is

negligible. Note that the participation cost is incurred by a peer for participating in the anonymity

system and is a one time cost, while the forwarding cost is incurred per forwarding instance. A

peer tries to maximize its own access bandwidth for sending its own traffic and therefore dur-

ing data forwarding for other peers, its rational (selfish) nature will make it forward traffic on

low bandwidth links. This type of selfish behavior by peers has been modeled for peer-to-peer

streaming [86].

5.3.4.2 Utility Model I

The forwarding and routing mechanism can be treated as a game where each forwarder can be

modeled as a player. The path formation can be modeled as a sequential reasoning process at each

forwarder such that the decision is influenced by the utility to the forwarders. Having outlined a

possible mechanism for evaluating edge quality in section 5.3.3, we can now formalize the utility

model for the ith peer (from equation 5.1).

Ui(j) = Pf + q(i, j)Pr − (C
p
i + Ct(i, j))

In this model the benefit to a forwarder i is proportional to the quality of the edge from i to
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its successor j. The rationale behind using this model is that each forwarder can make a local

decision based on the quality of the edges to each of its neighbors. Since a path is composed

of edges, ensuring a high quality for each individual edge can also lead to formation of a path

with high quality. In this case the determination of the optimal next hop requires sorting the

utilities corresponding to each edge and has a complexity of O(logd). From a system perspective,

we would like to derive the conditions under which there is a dominant forwarding and routing

strategy for each forwarder. Ideally, we would like peers to participate in the forwarding process

and route the payload to the best quality neighbor. We next show the conditions under which

forwarding can be induced and also show the existence of a dominant routing strategy for good

nodes.

Proposition 2. If we assume a constant participation cost Cp and a constant fowarding cost Ct for all

forwarders, then the condition Pf > CpN
Lk

+ Ct can induce peers to participate in forwarding.

Proof. Assuming that any node is equally likely to be selected on the forwarding path, the prob-

ability that a forwarder X is selected for atleast one forwarding instance is 1 − (1 − 1
N

)Lk ≈ Lk
N

.

Therefore its expected payoff E[Payoff] = Lk
N

{z(Pf − Ct) − Cp} + (1 − Lk
N

)(−Cp). Here z is the

total number of forwarding instances for the node. To induce the ”to participate in forwarding,

we require that E[Payoff] > 0. Therefore Pf > CpN
Lk

+ Ct.

Proposition 3. If Pf > (C
p
i + Ct

i), forwarding is a dominant strategy for the forwarding stage.

Proof. A non participating peer has a payoff of zero. However, if Pf > (C
p
i +Ct(i, j)), the payoff to

a forwarder is > 0 irrespective of the forwarding decisions made by other peers. Thus forwarding

is a dominant strategy for the forwarding stage.

Proposition 3 gives us a possible condition which can induce the availability of nodes. Note

that although in our model forwarding and routing decisions are decoupled, forwarding decisions

influence future routing decisions. For example, if a peer i participates in the forwarding path
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τ = 0.5 τ = 1 τ = 2 τ = 4

f=0.1 409 390 391 456
f=0.5 299 298 332 306
f=0.9 85 91 72 122
Mean 296 303 301 360

Table 5.2. Routing efficiency for utility model I.

for connection πk, it is highly likely that it will be selected for future connections. This in turn

increases i’s payoff and induces it to be available for future connections.

5.3.4.3 Utility Model II

We next consider an utility model whereby the utility is proportional to the quality of the path

from i to the responder R. The intuition is that i can select a neighbor corresponding to a high

quality path from i to R. Here q(π(i, j, R)) represents the quality of the path from i to R which goes

through j.

Ui(j) = Pf + q(π(i, j, R))Pr − (C
p
i + Ct(i, j))

The path formation can be modeled as a L stage game for a path of length L such that at each

stage only one player makes a move. We also define a history information at stage l. The history

information corresponds to the position of the forwarder on the path and the identity of the pre-

decessor. A subgame perfect nash equilibria is then a strategy profile SP such that each subgame

Gl ∀l = 1, 2 · · · , L is a nash equilibrium. The equilibrium strategy profile (S∗
i , S

∗
−i) can be derived

using backward induction. We again refer the reader to the technical report [66] for a detailed

discussion of this utility model.

5.4 Experiments

We analyze the effect of forwarding and routing benefits on the path quality and study the

effect of malicious nodes on the path equilibrium and how it affects the payoff of good nodes. We

use a discrete event simulator to perform the various experiments. For simulation simplicity, we

use a small network size of N = 40 to study the effect of the utility models. A poisson process is
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Figure 5.4. Comparison of the quality of a set of recurring connections between I and R using
different routing strategies.

used to simulate the joining of nodes and each node randomly selects d nodes as its neigbors (un-

less otherwise specified, d is selected as 5 in our experiments). A set of nodes are randomly

selected as Initiators and Responders. A (Initiator,Responder) pair is then randomly selected as

the end points of an anonymous message transmission. The number of maximum transmissions

for the same (I, R) pair is controlled using a parameter max − connections in our simulations. A

typical simulation setup involves 100 (I, R) pairs and a total of 2000 message transmissions, for an

average of 20 communications rounds for a single (I, R) pair. The forwarding benefit, Pf for a (I, R)

pair is randomly selected from the range [50, 100] (since we did not have any particular applica-

tion in mind, these values are arbitrary, however we believe they are reasonable to study the effect

of benefits through simulations) and τ is selected from the set (0.5, 1, 2, 4). Unless otherwise speci-

fied, the weights ws and wa are chosen as 0.5 and 0.5 respectively. We model the transmission cost

between two peers as being proportional to the communication bandwidth between them. The

session time of peers is modeled using a Pareto distribution and the median session time is set as

60 mins in accordance with the analysis done in [79]. A certain fraction f of nodes are selected as

adversaries and an adversary’s routing strategy is modeled as random routing.
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Impact of malicious nodes on the payoff for good nodes Adversarial or malicious nodes

randomly select the next hops for forwarding the packets which increases the size of the forwarder

set for a set of connections between I and R. Consequently, the expected payoff for good nodes can

decrease because the routing benefit gets shared by a large number of nodes and this can weaken

their incentive to cooperate. We study this effect through simulations. We also analyze the effect of

the size of forwarding and routing benefits and τ (ratio between routing and forwarding benefits)

on the payoff to a good node. We use routing efficiency (ratio of average payoff and average number

of forwarders) as a metric to quantify the effectiveness of the routing strategy of forwarders for a

given value of τ. Note that a high value of routing efficiency is aligned with the system objective

of inducing forwarders to make routing decisions so as to minimize the size of the forwarder set.

Figure 5.2 shows that a high value of τ tends to increase the routing efficiency.

5.5 System Implementation Issues

In this section, we discuss various issues we have considered in design the whole system based

on the proposed incentive mechanism. The first part is related to maintaining the anonymity in

the mechanism itself; and the second part is about general implementation issues.

5.5.1 Maintaining Anonymity in the System Implementation

Incentives for peer availability. The proposed incentive mechanism induces nodes to select

highly available next hops. Thus it is possible that malicious nodes become highly available and

wait for paths to be reformed through them. This is especially effective at the initial stages when

the first connections between (I, R) pairs is set up. Thus a malicious node can be selected as a

next hop because of its high availability and due to history information stored at forwarders,

it will occur in future connections. We use the following modification to thwart these types of

availability attacks. If there is no history information at a node about previous connections (this

can happen when it initially joins the system or after it has flushed its history table), then it should

randomly select a neighbor as the next hop and therefore no preference is given to availability.

With the passage of time, more and more connections would be set up which in turn would induce
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the availability of peers and therefore malicious peers would not have an added advantage of

getting selected as forwarders over good nodes.

Collecting availability and cost information. Each peer collects availability and cost of trans-

mission information about neighbors and therefore this results in additional traffic being gener-

ated. However this is not vulnerable to traffic analysis attacks [70] because of the following obser-

vations. The collection of availability information is periodic and each node (including the initiator

and responder) executes it. Moreover since there is no correlation between the timing of collec-

tion of availability information and actual forwarding of anonymous traffic, the incentive based

forwarding mechanism does not make the system any more vulnerable to timing attacks [73] than

any non-incentive based forwarding scheme.

Connection identifier and history information about previous connections. Each peer stores

history information for anonymous connections which pass through it. As described before, his-

tory information for a connection is tagged with its connection identifier. This raises the question

that this connection identifier makes it simple for adversaries to correlate between the same (I, R)

pair. However, the premise of an intersection attack is based on the assumption that there is a

session identifying information available to the malicious entities in the transmitted packets [98] .

Therefore the use of a connection identifier in our mechanism does not make the system any more

weaker. However if a peer is compromised, the history table can give valuable information about

connections passing through the peer. This can be avoided if each peer encrypts the contents of

the history table using a secret key and physically protects this key using tamper proof hardware.

5.5.2 Other System Implementation Issues

Membership information. We assume a system containing N nodes which participate in re-

questing anonymous communications and forwarding traffic for other nodes. The membership

information about nodes participating in the system can be maintained either in a centralized or

in a distributed manner. We first compare the two approaches and then outline a distributed hash

table based mechanism for maintaining membership information. In a centralized membership
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management system, a central server manages and updates information about existing members.

It is simpler and easier to manage than a distributed approach. Moreover in such systems the

membership information of the nodes participating in the system does not become disjoint. The

disadvantage is that the central server can indulge in malicious reporting of membership infor-

mation and can therefore make a “good” node forward its traffic to a “bad” node. Therefore for

proper functionality of the system, the central server must be a trusted entity and therefore it be-

comes a bottleneck. On the other hand a distributed approach is better suited for systems in which

information about only a few other nodes is required. In our model, d is a small fraction of N and

therefore each node participating in the system only needs membership information about a small

fraction of other nodes participating in the system. We can use a distributed hash table based ap-

proach for maintaining membership information. Note that in this case the DHT (e.g. Chord) is

used only for maintaining membership information and not for object lookup. Therefore the rout-

ing decisions is influenced by the incentive mechanism and not by the chord routing structure.

For example in Chord [91], each node maintains information about only log(N) other nodes in its

finger table. These fingers can then be used as the forwarding neighbors. A node can then select

d(≤ log(N)) nodes as its forwarding neighbors. Therefore this ensures that a network overlay

can be created with an uniform and bounded nodal degree of d(≤ log(N). Since the number of

fingers increases with network size N, the maximum possible value of d also increases. Since the

point at which a node joins the hash table is uniformly random (due to consistent hashing), the

neighbor set selection is also uniformly random 5. Moreover, the probability of network partition-

ing in Chord is very low and therefore this ensures that a forwarding path from I to R does not get

restricted to a partitioned subset of nodes. Figure 5.5 shows the components of the system.

Maintaining history information and other issues. We assume that a communication chan-

nel set up from I to R has a unique identifier. For example, a one-way hash function h(.) can

be used and therefore connection identifier = h(I, R). Note that from the connection identifier, it

is not possible for the intermediate nodes to deduce the identity of I. As described earlier, each

node maintains a history list of connections for which it has acted as a forwarder. Thus if a node
5We assume that the chord id can be used as the membership id in this case
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Figure 5.6. System architecture overview.

participates in a forwarding path for a given path identifier, it stores the previous and next hop

information in the history list. Since theoretically a forwarder can lie on O(N2) connections, the

number of entries in the history list can explode. Each node therefore maintains a fixed number

of entries and uses a LRU replacement policy. Thus history information about the most recent

connections is stored in the history list. Finally, the cost of forwarding the payload to a neighbor

also influences the forwarding decision. The communication cost to a neighbor depends on the

type of application for which the system is used. For example, in peer-to-peer file sharing, the

bandwidth available to the neighbor dominates the communication cost (we refer the reader to

the cost model presented in section 5.3.4.1. Existing network probing tools can be used for band-

width estimation to arbitrary nodes in the overlay. Figure 5.6 shows the routing and forwarding

module used at each intermediate node. For any incoming connection that has to be forwarded,

the decision module uses information from history list and network monitoring tool(s) to identify

the next hop (from its neighbor set) on the forwarding path.

Payment infrastructure. Here we outline a possible implementation of a payment mecha-

nism. Our payment infrastructure consists of a central bank M for monetary transactions. The

bank issues certificates for different amounts as requested by the peers for setting up anonymous

communication channels to other peers. We assume that all communications between initiators

and M take place through a trusted proxy which hides the identity of the initiator and use a

pseudonym based approach [60] for authentication between I and the bank. When the initiator

wants to set up a forwarding path to the responder, it embeds a certificate for an amount equal

to Pf along with τ with the payload and sends it to the first forwarder. Note that the identi-
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ties of the intermediate nodes is not known to the initiator at the time of setting up the path.

Consequently a certificate for the routing benefit cannot be included with the payload without

verifying the path formed from the initiator to responder. We therefore use a path verification

mechanism in our scheme. The forwarders redeem the forwarding benefit by presenting the cer-

tificate corresponding to the forwarding benefit (along with a proof-of-forwarding) to the bank.

The payment corresponding to the routing benefit is made to the intermediate forwarders after

verification of forwarding and routing. We assume the existence of a Public key infrastructure for

issuing public-private keys to the peers. Figure 5.7 shows the lifecycle of the forwarding and the

payment mechanism. Due to space limitations, we refer the reader to the technical report [66] for

a detailed description of the payment infrastructure.

Cryptographic operations in route formation and route verification. To initiate an anony-

mous connection with R, I selects the first forwarder from its set of neighbors and forwards the

payload along with the certificate for amount Pf. Note that unlike payment mechanisms for onion-

routing [35], the identity of the forwarders (except the first) is not known to the initiator and there-

fore the certificate is not bound to any particular identity. The message intended for R is encrypted

with its public key. I also creates a public session key E{session} and includes it with the payload.

The corresponding private key is used by I to regenerate the path information before it makes

payments to the forwarders. Each forwarder uses the utility function to decide on the next hop

and repeats the forwarding process until the payload reaches R. For example, in figure 5.7, I will

send the following to A.

I → A : {RREQ, {message}ER
, n, Pf, τ, Cf{Pf}sign(I), Esession, R}

RREQ identifies it as a request message and n is a random nonce. Cf{Pf}sign(I) is a certificate for

the amount Pf which is signed by I. Once the payload reaches R, it decrypts the message using its

private key. It then sends back a confirmation (receipt) through the reverse path as follows:

R reverse-path
−−−−−−−−−→

: {RREP, n, {hash(message)}DR
, {previous hop}Esession

}

RREP signifies a reply message and n is the corresponding connection identifier. The hash of

the message is used for integrity checking and is encrypted by R using its private key. This as-
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sures I that R has received the correct message because only R can encrypt it using its private

key. Finally, to send the path information back to I, R also includes the previous-hop identity,

which is encrypted with the public (session) key sent by I. Each intermediate node repeats the

same forwarding process through the reverse path. When the next forwarder (in reverse path)

receives this, it adds its own-id 6, its previous hop and next-hop information, all encrypted with

the public session key. For example, in figure 5.7, the path information sent by A to I would

be {{A, I, B}Esession
, {B,A,C}Esession

, {C,B, R}Esession
, {R,C}Esession

}. After receiving the receipt and

path information, I can recreate the forwarding path and also know the identities of the interme-

diate forwarders. Note that the use of a private-public key ensures that only I can recreate the

path information. We again refer the reader to the technical report [66] for details.

5.6 Payment Infrastructure

In this section we first outline a possible implementation of a payment mechanism and then

present the design details along with the different cryptographic operations that are required. The

payment infrastructure incorporates three main components; a central bank for issuing payment

certificates, a path verification mechanism and finally the payment mechanism. Since our over-

all objective is to enhance the anonymity of communications, we must ensure that the payment

mechanism does not compromise the identity of the initiator. We therefore incorporate the follow-

ing design principles into our payment mechanism; a) The number of communications involving

I should be minimal (so that traffic analysis attacks cannot be used to identify I) and b) Any cen-

tralized entity that is used should not be able to deduce either the identity of I or path information

between I and R. We assume the existence of a PKI which is required for the cryptographic oper-

ations.

We assume the existence of a central bank M for monetary transactions. The bank issues cer-

tificates for different amounts as requested by the peers for setting up anonymous communication

channels to other peers. We assume that all communications between initiators and M take place

through a trusted proxy which hides the identity of the initiator. When the initiator wants to set
6Without revealing its actual identity, an intermediate forwarder can include its pseudonym
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up a forwarding path to the responder, it embeds a certificate for an amount equal to Pfo along

with τ with the payload and sends it to the first forwarder. Note that the identities of the inter-

mediate nodes is not known to the initiator at the time of setting up the path. Consequently a

certificate for the routing benefit cannot be included with the payload without verifying the path

formed from the initiator to responder. We therefore use a path verification mechanism in our

scheme. Finally, payment is made to the intermediate forwarders after verification of forwarding

and routing. Figure 5.7 shows the lifecycle of the forwarding and the payment mechanism. The

following sections describe in details the different steps of the lifecycle.

1. Buying certificates from bank

Before I can set up an anonymous connection with R, it has to buy a certificate for an amount

Pfo from the bank. This amount corresponds to the benefit of forwarding for each intermediate

forwarder. I can create a certificate and then send it to the bank for its signature or it can request

the bank for the certificate (Steps 1 and 2). In either case, the bank needs some kind of iden-

tity information about I so that it can withdraw the desired amount from I’s account. We use a

pseudonym based approach [60] to ensure privacy of I during the transaction. A pseudonym is an

identifier which cannot be directly linked to the actual identity of the initiator but can still be used

for accountability. Thus I includes its pseudonym and the account number in the request. Finally

after verifying the account information and ensuring the availability of the requested amount Pfo,

M signs the certificate using some kind of blind signature scheme [22] (similar to the scheme

presented in [35]) and sends it back to I.

2. Cryptographic operations in route formation

To initiate an anonymous connection with R, I selects the first forwarder from its set of neigh-

bors and forwards the payload along with the certificate for amount Pfo. Note that unlike payment

mechanisms for onion-routing [35], the identity of the forwarders (except the first) is not known

to the initiator and therefore the certificate is not bound to any particular identity.

I → F1 : {RREQ, {message}ER
, n, Pfo, τ, Cf{Pfo}sign(I), Esession, R}

RREQ identifies that it is a request message. The message intended for R is encrypted with its

public key. n is a random identifier for the connection. Cf{Pfo}sign(I) is a certificate for the amount



www.manaraa.com

51

RI
Forwarding overlay

Bank (M)

Step
1:

Cert
ific

ate
req

ues
t (fo

rw
ard

ing)

Step
2:

Cert
ific

ate
iss

uan
ce

Step 3: {Payload, certificate}
Step 4: Route verification

Step
5:

Cert
ific

ate
req

ues
t (ro

utin
g) Step 6: Certificate redemption

A B C

Figure 5.7. Payment mechanism

Pfo which is signed by I. This is required to ensure non-repudiation by I before it makes payments

to the forwarders. Note that the signature must not compromise the identity of I. Therefore a

signature generated by I using its public key cannot be used. This is because if the number of

public keys in the system is very less, it becomes very easy for the adversary to identify I from its

signature (e.g. using a brute force attack). So an anonymous digital signature scheme [102] can

be used. E{session} is a public key created by I for the session. The corresponding private key is

used by I to regenerate the path information before it makes payments to the forwarders (details

provided in Route regeneration section). Each forwarder uses the utility function to decide on the

next hop and repeats the same process. Thus

Fi → Fi+1 : {RREQ, {message}ER
, n, Pfo, τ, Cf{Pfo}sign(I), Esession, R}

Each forwarder stores the previous hop and next hop information and also a copy of the certificate.

These are required during the route regeneration and payment phases respectively as described

later.

3. Route regeneration by I

Payment can be made by I only after it gets verification of forwarding by the intermediate

nodes. As has been described in the section on path formation, I generates a private-public key

for the session and includes the public key in the payload. Thus each intermediate node has access

to the public key sent by I. Note that the session public key does not release any information about
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the identity of I. Once the payload reaches R, it decrypts the message using its private key. It then

sends back a confirmation (receipt) through the reverse path as follows:

R reverse − path
−−−−−−−−−−−→

: {RREP, p, {hash(message)}DR
, {previous hop}Esession

}

RREP signifies a reply message and n is the corresponding connection identifier. The hash of the

message is used for integrity checking and is encrypted by R using its private key. This assures

I that R has received the correct message because only R can encrypt it using its private key. Fi-

nally, to send the path information back to I, R also includes the previous-hop identity, which

is encrypted with the public (session) key sent by I. Each intermediate node repeats the same

forwarding process through the reverse path similar to the following:

Fi → Fi−1 : {n, {hash(message)}DR
, {path}Esession

}

When the next forwarder (in reverse path) receives this, it adds its own-id 7, its previous hop

and next-hop information, all encrypted with the public session key. Thus the entity path be-

haves like an onion. For example, in figure 5.7, the path information sent by A to I would

be {{A, I, B}Esession
, {B,A,C}Esession

, {C,B, R}Esession
, {R,C}Esession

}. After receiving the receipt and

path information, I can recreate the forwarding path and also know the identities of the interme-

diate forwarders. Note that the use of a private-public key ensures that only I can recreate the

path information.

4. Payments to forwarders

Using the path information, I calculates the appropriate routing benefits for each forwarder

based on the selectivity of the path. For each forwarder, it requests a certificate Cr for the appro-

priate amount from the bank and includes its own pseudonym and the forwarders pseudonym.

Finally each forwarder redeems the certificate Cr by submitting its credential to the bank. Since it

also possesses Cf (from the RREQ phase), it redeems the certificate by presenting it to the bank.
7Without revealing its actual identity, an intermediate forwarder can include its pseudonym
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5.7 Summary

We have presented an incentive mechanism to increase peer availability and reduce path refor-

mations for forwarding based anonymity systems. We propose two utility models and use game

theory to evaluate forwarding and routing strategies of intermediate peers. We also show the ap-

propriateness of these utility models for forwarding based anonymity systems and evaluate their

effectiveness in aligning the forwarding and routing strategies of peers. We compare the effective-

ness of routing under these models with random routing. Our simulation results show that the

incentive mechanism is quite effective both under churn and presence of malicious adversaries.

We also outline a payment mechanism and show that in trying to increase the system anonymity,

the payment mechanism does not actually decrease it. In designing the incentive mechanism, we

have tried to address the two issues of compliance and availability in an anonymity system [35]

within the same framework.
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CHAPTER 6. Anonymity in Structured Peer to Peer Networks

6.1 Structured Peer to Peer Networks

In a structured overlay network, connections are made between nodes according to some algo-

rithm. Most of the structured networks share common design features; a large identifier space of

the order of Z2128 or Z2160, the nodes are partitioned on the identifier space and routing structure

is based on butterfly, hybercube or ring like structures and in most cases the number of hops to

the destination is of the order of O(log N). Data is stored on the nodes by hashing on content or

data identifiers and then assigning the data to a node which is responsible for that identifier space.

Therefore, these networks are also called Distributed Hash Table (DHT) based networks.

An important security issue in a DHT-based P2P storage system for file sharing is to provide

recipient anonymity to the storage nodes in the system. In a P2P storage system using DHT, the

DHT is used to return the network address of the storage node for a given document key. For

example, in DHTs like Chord [91] and CAN [64] the query for a key returns the IP address of the

node storing the documents that match that key. AChord [44] added anonymity feature to Chord

by modifying “lookup-by-address” to “lookup-by-value”. However, AChord is still vulnerable to

attacks to the index nodes1: If a hacker breaks into an index node, information stored in the node’s

routing table will be leaked.

6.2 Effect of Design on Recipient Anonymity

The risk of leaking information from DHT routing tables has not been well analyzed in cur-

rent research. DHTs were primarily designed for routing efficiency and scalability. For example,

Chord uses a structured routing geometry such that the search takes up to O(log N) steps to com-
1It is possible that a node plays the role of an index node and a storage node simultaneously.
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plete a query. The side effect is that the routing tables contain a substantial amount of information

about other nodes in the system. This information can be used by adversaries, if the system is

breached, to compromise the anonymity of storage nodes, i.e. the recipient anonymity. A re-

cently proposed design called Neblo [25] uses imprecise routing to enhance recipient anonymity.

Agyaat [87] proposes the use of unstructured clouds on top of a structured overlay to hide re-

cipient anonymity (Table 6.1 shows the previous attempts at enhancing anonymity for structured

networks). However, no research has been done to quantify and compare the information leak

from routing tables in different DHT designs.

In this chapter, we outline an analytical model to analyze, quantify and compare the leak of

privacy from the routing tables in existing DHT designs. There are two primary factors that in-

fluence the amount of information contained in a routing table: the type of routing geometry and

the size of routing table. Our model gives valuable insight into how different routing geome-

tries will affect the recipient anonymity. It uses entropy to calculate the amount of information

leak. Based on this model, we compare information leak in different DHTs when index nodes are

breached. We have compared the use of Chord [91], CAN [64], Kademlia [55], Pastry [78] in build-

ing a P2P storage system with the same routing complexity, i.e. the number of hops in the routing.

Our analytical results show that for the same routing complexity, ring-based DHT (Chord) has

the minimum information leak. The general trend is that the state information stored in routing

tables increases with routing optimizations, thereby resulting in significant information leak. We

observe that Kademlia (XOR routing) has a significant amount of information leak for small over-

lay sizes. Pastrys (hybrid routing) performance is quite close to that of the ring structure. The

hypercube-based routing in CAN has an important side-effect, i.e. of localizing the information

loss. We also analyse the effect of routing table size on leak of information. We believe that our

preliminary findings can help us better understand the effect of routing geometry on the state

information stored in routing tables which can lead to the development of DHT designs with an

optimal balance between routing efficiency and information leak.
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Privacy-enhanced Type of information leak Method used
DHT system addressed

AChord Query reply Lookup by value
Neblo Routing table Imprecision in routing tables

Agyaat Query reply Unstructured cloud over a
structured overlay

Table 6.1. Proposed privacy-preserving DHT designs.

6.3 Quantifying Information Leak from Routing Tables

Structured overlays like Chord [91], CAN [64], Pastry [78], Kademlia [55], and Viceroy [54]

use distributed hashing to store keys at nodes. A node in such a DHT is identified by a tuple

<IP address, Identifier>. The information contained in the tuple can be used by an adversary to

compromise recipient (storage) anonymity. In the context of a distributed hash table, recipient

anonymity is broken when the adversary can generate the mapping between a node’s IP address

and its identifier range. The objective of the adversary is to generate a map of the system. Such

a mapping between a node’s IP address and identifier range can be generated by compromising

a sufficient number of routing tables 2. The amount of information stored in routing tables is

influenced by the type of routing geometry used in the DHT and also the size of the routing ta-

bles. Thus, our objective is to compare different DHT designs with respect to recipient anonymity

through a common analytical framework and suggest improved design considerations. The im-

portant assumption here is that the lookup for a key is done through “lookup of data” and not

“lookup of address” (See AChord [44]).

6.3.1 Information Stored in Routing Tables

A routing table of a node in a DHT either stores IP addresses of neighbors or mapping between

IP addresses and identifier range. The information content of routing tables is directly related to

routing efficiency. Consider the case of flooding (Gnutella which is an unstructured overlay).

In Gnutella, each node only maintains information about its overlay neighbors and there is no
2In this context, an adversary may not necessarily compromise a node to get access to its routing table. An adversary

can simply occupy a certain position on the identifier space and use information contained in its own routing tables to
compromise recipient anonymity
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Figure 6.1. Information leak from compromised routing tables. The gradient shows the degree
of information loss, darker shades representing high information loss. (a) Chord: The amount
of information loss decreases with the distance of fingers; (b) CAN: Complete information loss
about the identifier ranges of neighbors; (c) Kademlia: It exhibits similar properties as Chord;
however the replication of data through the use of a replication factor k requires maintenance of
larger routing state information and thereby more leak of information; (d) Flooding (Gnutella):
since no mapping information is maintained, negligible information about the keys stored at
the neighbors is released; Pastry, although not shown here exhibits similar properties as Chord
and Kademlia.

mapping between a node and the keys that it stores. Thus, compromising a node only reveals

information about keys stored at that node and nothing about the neighbors. However, in a DHT

mapping information about neighbors is also stored for increased routing efficiency. While this

leads to improved routing efficiency (O(log N) as compared to O(N) in gnutella), it also makes the

DHTs vulnerable to leak of recipient anonymity (Figure 6.1 compares the information leak from

routing tables for different DHT designs). We consider the effect of the following factors on the

amount of information stored in routing tables: (a) routing geometry and (b) size of routing tables.
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Figure 6.2. Identifier range of a node.
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6.3.2 Information-Theoretic Framework for Analyzing Leak of Recipient Anonymity

We use the information-theoretic metric of entropy [83] to evaluate different DHT designs by

calculating the leak of information in each design. Entropy is a measure of “randomness” in

available information. Let X be the random variable which represents the identifer range of a

node as observed by an adversary when a routing table is compromised. Let this observation

correspond to the event ω. Figure 6.2 shows the identifier space of a DHT and the identifier range

of node S corresponding to observation ω. We assume that x can take any value in R with equal

probability. We next highlight the different elements of the information-theoretic framework.

The entropy of random variable X is given as,

H(X) = −
∑

x∈R

Pr(X = x) log Pr(X = x)

• Apriori Entropy: It is the entropy before any routing table has been compromised or in

other words, before the adversary has made any observation about the mapping between a

node and its identifier range. From the adversary’s perspective, the first node can take any

of N positions, the second node can take any of the remaining N − 1 positions and so on

and so forth (where N is the size of the overlay). For large N, the apriori entropy can be

approximated as

H(X)
system
apriori = N log N

• Aposteriori Entropy: When a routing table is compromised (corresponding to observation
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ω), the information stored in the routing table can be used by the adversary (coalition of ad-

versaries) to generate a mapping between node addresses and their identifier ranges. Thus,

the aposteriori entropy corresponds to the entropy of the system after a routing table has

been compromised. Higher the number of compromised routing tables, lower will be the

system entropy (reduction in the randomness of the system).

• Information Loss

Loss = Apriori Entropy (before any routing table has been compromised) - Aposteriori En-

tropy (after one or more routing tables have been compromised)

• Degree of Privacy 3: To calculate the degree of privacy, we use the definition proposed in

[90].

d(A) =
H(X)

system
aposteriori

H(X)
system
apriori

6.4 Comparison of Existing DHTs

In this section, we compare how DHTs with different routing geometry perform in the face

of anonymity attacks. We analyze how the routing geometry influences leak of information from

compromised routing tables thereby affecting the privacy of the storage nodes. The routing ge-

ometry influences the amount of state information that is maintained in routing tables. Consider

Chord which achieves logarithmic routing efficiency by maintaining log N entities in its routing

table. However, two compromised routing tables might have some intersection in their routing

tables. In comparison, 1 and 2-dimensional CAN maintain constant state information and the in-

formation loss is also localized (we discuss this in subsequent sections). However, to maintain

the same routing efficiency as Chord, the state information in each routing table (d) is log N/2. In

DHTs like Kademlia the flexibility of routing improves routing efficiency (e.g. latency) but leads

to an increased leak of information. In all these cases the state information maintained in routing

tables increases with size. However, in systems like Viceroy, a constant number of entries are main-

tained in the routing tables and therefore information loss is constant. In contrast, flooding-based

approaches are more secure because the mapping between neighbors and their overlay addresses
3We use the terms anonymity and privacy interchangeably
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CAN Chord Kademlia Pastry Gnutella
Size of adversarial coalition O( N

log2 N
) O( N

log N
) O( N

k log N
) O( N

log
2b N

) O(N)

Table 6.2. Size of adversary set which can map the overlay of size N. The replication factor k

affects the leak of information in Kademlia.

is not stored. We now evaluate different DHT designs and quantify the information loss from

compromised routing tables. Subsequently, we derive expressions for the degree of privacy. We

consider the following routing geometries: a) Ring, b) Hypercube, c) XOR, d) Hybrid.

6.4.1 Ring-based DHT

In a ring-based DHT design, nodes lie on a one-dimensional identifier space on which the dis-

tance between two identifiers is the clockwise distance between them. The Chord DHT represents

a ring-based design. In Chord, each node stores information about log(N) fingers, such that if a

node has identifier p, its ith finger is the node closest to p + 2i on the identifier space. Moreover,

the range information stored about a finger decreases as its distance from p increases.

Consider Chord with O(log N) finger table entries. When a finger table is compromised, in-

formation about O(log N) IP addresses are leaked to the adversary. Let the compromised node

have an identifier p. Consider its ith finger. We need to calculate the lower and upper bound of

its address interval. We know that the ith finger succeeds p by at least 2i−1 on the identifier circle.

Therefore, the address interval of the ith finger (Ri) is (p, id of ith finger]. This address interval

can be reduced using the (i − 1)th finger to (id of (i − 1)th finger, id of ith finger]. In terms of p,

Ri = |address − interval|

= (p + 2i−1 + ∆i) − (p + 2i−2 + ∆i−1)

= 2i−2 + (∆i − ∆i−1)

The aposteriori entropy corresponding to a single compromised routing table is then given as:

H(X)aposteriori =
∑

i

log Ri

≤
∑

i

log(2i−2 + ∆i − ∆i−1)
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Since the ith finger is the first finger which exceeds p by atleast 2i−1, there is no other node in ∆i.

Therefore, Ri = (2i−2 + ∆i − ∆i−1) − ∆i = (idi − idi−1)

H(X)aposteriori ≤
∑

i

log(2i−2 − ∆i−1)

=
∑

i

log 2i−2

=
∑

3≤i≤log N

log 2i−2

=
1

2
(log N − 1)(log N − 2)

If c routing tables are compromised,

H(X)
system
aposteriori = (N − c log N) log N +

c

2
(log N − 1)(log N − 2)

Degree of anonymity can then be calculated as:

d(A) =
(N − c log N) log N + c

2
(log N − 1)(log N − 2)

N log N
(6.1)

We observe that the information leak from a single compromised routing table is of O(log2N)

and is influenced by the number of entries in the routing table.

Observation 1. A coalition of O( N
log N

) adversaries can map the entire overlay. This can be derived by

setting d(A) = 0.

6.4.2 Hypercube-based DHT

The routing used in CAN resembles a hypercube geometry. A d-torus is partitioned among

the nodes, such that each node owns a zone. In a d-dimensional coordinate space, two nodes are

neighbors if their coordinate spans overlap along d−1 dimensions and abut along one dimension.

Each node maintains a maximum of 2d neighbors. This information includes the IP address of the

neighbor and its virtual coordinates. The virtual coordinates reveal the exact keyspace for which

the neighbor is responsible. Thus, if a node is compromised, the exact identifier range of (2d + 1)
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nodes is revealed. Note that in CAN since each node maintains information about its neighbors

which are close to it in the identifier space, the information loss from a compromised routing table

is localized. Contrast this with Chord, where a compromised routing table can give information

about distant nodes. We discuss this issue and its implications later.

Apriori Entropy: Using a similar analysis as Chord, a node is responsible for 1
N

of the unit

identifier volume. Therefore,

H(X)apriori = log N, H(X)
system
apriori = N log N

Aposteriori Entropy: We next derive the aposteriori entropy after c routing tables have been

compromised. Note that in CAN, when a node is compromised, the exact information about the

identifier space of the node and all its neighbors can be deciphered. This corresponds to zero

entropy. Therefore,

H(X)
system
aposteriori = (N − c(2d + 1)) log N

Degree of privacy is then given by

d(A) ≥
H(X)

system
aposteriori

H(X)
system
apriori

=
(N − c(2d + 1)) log N

N log N
(6.2)

Lemma 1. For the same scaling properties, CAN is less robust to privacy attacks than Chord.

Proof. To achieve the same scaling properties, d =
log N

2
in CAN. Therefore a coalition of N

log2 N

adversaries is sufficient to map the overlay.

Table 6.2 shows the size of the adversarial coalition required for mapping the overlay for dif-

ferent DHT designs. The values can be easily obtained by setting d(A) = 0 in the respective

equations and calculating for c.
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6.4.3 DHT with XOR Routing

The routing in Kademlia is based on the concept of XOR distance: the distance between two

nodes is the numeric value of the exclusive OR (XOR) of their identifiers. If the identifier space is

represented by m bits, for each 0 ≤ i < m, every node stores a list of < IPaddress,UDPport,NodeID >

triples for nodes of distance between 2i and 2i+1 from itself. These lists are called k-buckets. While

on one hand this gives routing flexibility (for example in comparison to Chord), a compromised

routing table gives more information about other nodes in the system. The leak of information

increases with k.

Consider the ith k-bucket. We assume that the identifier range of a node in any bucket is

equally distributed among the nodes in that bucket. Using a Chord-like analysis,

H(X)aposteriori =
∑

i

log Ri

≤ k
∑

i

log(2i−2/k)

=
k

2
(log N − 1)(log N − 2)

−k log k(log N − 3)

Degree of privacy is then given by

d(A) =
1

N log N
((N − ck log N) log N

+
ck

2
(log N − 1)(log N − 2)

−ck log k(log N − 3)) (6.3)

6.4.4 DHT with Hybrid Routing

We use Pastry as an example of hybrid routing. Pastry uses both tree and ring based routing

to search for keys. Node identifiers are regarded as both the leaves of a binary tree and as points

on a 1-dimensional circle. Each node maintains a leaf-set, neighbor-set and a routing table. We
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Figure 6.4. Leak of privacy for N=1000.
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Figure 6.5. Leak of privacy for N=50000.

evaluate the range of an entry in the routing table as perceived by an adversary. Each row in a

routing table has a maximum of 2b − 1 entries and there are a total of log2b N rows. Consider the

ith row. The range covered by the ith row is 2bm−i
− 1. The range covered by the (i − 1)th row is

2bm−(i−1) . Therefore the effective identifier range covered by the ith row is 2bm−(i−1)
(2b − 1). Since

each row contains 2b − 1 entries, the effective identifier range corresponding to a single node in

the routing table is 2bm−(i−1) . We plug this range into entropy equation and evaluate information

loss as outlined below.

H(X)aposteriori =
∑

i

log Ri

≤ (2b − 1)
∑

i

log(2bm−1

)

= (2b − 1)b log2

2b N/2

Degree of privacy is then given by

d(A) =
1

N log N
((N − c log

2b N(2b − 1)) log N

+
c

4
(2b − 1)blog2

2bN) (6.4)
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Overlay Size CAN CAN CAN Chord Kademlia Pastry Gnutella
(1-dim) (2-dim) (d = log N/2)

500 1 0.6 2 0.55 34.9 1.34 0.2
1000 0.5 0.3 1.1 0.28 18.8 0.75 0.1

10000 0.05 0.03 0.14 0.03 2.3 0.1 0.01
50000 0.01 0.006 0.03 0.005 0.5 0.02 0.002

Table 6.3. Percentage of information loss (measured in bits) when a routing table is compro-
mised. A 100 % information loss corresponds to the case when the entire overlay can be
mapped by the adversary (for kademlia, k=20 and for Pastry, b=2).

CAN Chord Kademlia Pastry Gnutella Viceroy
Size of routing table 2d log N k log N log2b N Constant Constant

Table 6.4. Size of routing table.

6.5 Analysis

Here we analyze the effect of routing geometry on the amount of information leak from com-

promised routing tables. We also compare DHTs based on the size of the routing table and how

that affects leak of privacy. Finally we compare and contrast structured DHT designs with un-

structured overlays which use flooding.

6.5.1 Routing Geometry

Figures 6.4 and 6.5 show the variation of degree of privacy with fraction of compromised

nodes for different DHT designs. For the same scaling properties (in case of Distributed Hash

Tables), Chord is the most robust against leak of information. In the case of 1- and 2-dimensional

CAN, the decrease in privacy with fraction of compromised nodes is less than Chord. For 1-

and 2-dimensional CAN, the information leak is a function of c only and is not dependent on N,

since the size of the routing tables is constant at 2d. However, 1- and 2-dimensional CAN take

a larger number of routing steps to converge. On the other hand, to achieve the same scaling

properties as Chord, d = (log N)/2) and information leak increases with N. Observe that the plot

is much steeper in case of CAN with d = log N/2 as compared to Chord. Routing optimization

in Kademlia is done through the maintenance of k buckets at each node. While this improves
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lookup latency, it requires the maintenance of a large amount of state information at each node.

Therefore a compromised routing table leaks more information than Chord. For the same scaling

properties, Pastry is the closest to Chord. However, for lookup optimization, Pastry maintains

a leaf-set (besides the routing table) at each node. This leaf-set can leak information about an

additional set of nodes in the system.

Table 6.3 shows the percent of information loss (in bits) when a routing table is compromised.

We observe that Chord shows the maximum resilience to privacy leak for different overlay sizes.

Observe that in the case of 1 and 2-dimensional CAN, the fraction of information loss ∝ 1
N

since

the number of entries in the routing table is fixed (=2d). However, when d = log N/2, the leak

of privacy increases and is appreciably higher than Chord. In Pastry a routing table stores infor-

mation about (2b − 1) log2b N nodes. If b = 1, the state information maintained is same as that of

Chord. Our analytical model shows that the privacy leak in that case is similar to that of Chord.

However, the leak increases when the base is 4. In Kademlia the replication parameter k is typi-

cally set as 20. We observe that for small overlay sizes, the number of replicas has an adverse effect

on the leak of information from routing tables. However, the information leak decreases with an

increase in overlay size. The general trend is that DHT designs with routing optimizations tend to

exhibit higher leak of information from compromised routing tables.

We also observe that the routing geometry of CAN leads to “localized” information loss when

a routing table is compromised. By “localized” we mean that when a node is compromised, the

routing table gives information only about neighbors which are close on the identifier space. Con-

trast this with Chord, in which the finger table stores information about distant nodes. The im-

plication is that in CAN (as compared to other designs), compromised nodes in a certain region

of the identifier space localize the information leak without affecting substantial portions of the

overlay.

6.5.2 Routing Table Size

The size of the routing table affects the leak of information about the overlay. The routing

geometry and routing optimizations influence the number of entries in the routing table (Ta-

ble 6.4 shows the routing table size for different DHT designgs). We have observed that in all
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the aforementioned DHT designs the size of the routing table varies with the size of the overlay

N. In contrast flooding-based approaches in unstructured overlays maintain constant state infor-

mation (typically 3−8 in gnutella). However, the important question to ask is can we have a DHT

design which achieves logarithmic routing efficiency by maintaining constant state information.

Viceroy [54], which emulates the butterfly network, achieves such efficiency. We did not include

Viceroy in our analysis since we wanted to analyze DHTs which are based on a similar design

principle. Each node maintains information about 7 other nodes in the overlay. As part of our

future work, we plan to analyze the information leak from the Viceroy network.

6.5.3 Comparison with Unstructured Networks

In this section, we compare the information leak property of DHTs with that of flooding based

search systems. We use the Gnutella [40] protocol as the basis for an unstructured routing geom-

etry. In Gnutella and other flooding-based search systems, no state information corresponding to

mapping between nodes and keys is maintained. Thus, each node only maintains information

about its neighbors but is not aware of the keys that are stored at the neighbors. Any search query

propagates through the unstructured network and eventually reaches the node responsible for the

key. Therefore, if c nodes are compromised, the adversary can know only about the keys mapped

to those compromised nodes.

The degree of privacy is then given by

d(A) =
H(X)

system
aposteriori

H(X)
system
apriori

(6.5)

=
(N − c) log N

N log N
(6.6)

Observe the bits of information leaked in the case of Gnutella (Table 6.3). Since each node

maintains information only about its 1-hop neighbors and is blind with respect to the information

stored in the neighbors, an adversarial coalition of size O(N) is required to map the overlay. Thus,

an unstructured overlay has very good privacy properties; however, it lies at the end of the routing

efficiency spectrum.
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6.6 Summary

We have presented an information-theoretic framework for evaluating the resilience of differ-

ent DHT designs against leak of privacy. Our entropy-based analytical model helps us to quantify

the leak of information from compromised routing tables. We analyze the effect of routing geom-

etry, optimizations and route table size on the amount of information leak. Our analytical results

show that for the same routing complexity, ring-based DHT (Chord) has the minimum informa-

tion leak. The general trend is that the state information stored in routing tables increases with

routing optimizations, thereby resulting in significant information leak. We observe that Kadem-

lia (XOR routing) has a significant amount of information leak for small overlay sizes. Pastry’s (hy-

brid routing) performance is quite close to that of the ring structure. The hypercube-based routing

in CAN has an important side-effect, i.e. of localizing the information loss. We also analyse the

effect of routing table size on leak of information. We believe that our preliminary findings can

help better understand the effect of routing geometry on the state information stored in routing

tables which can lead to development of DHT designs with an optimal balance between routing

efficiency and information leak.
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CHAPTER 7. SCUBE: Enforcing Location Privacy through Access Control

7.1 Vulnerability of Search Indexes in P2P File Sharing

Over the past few years, peer-to-peer (P2P) applications have become very popular with the

most widespread application being file sharing. P2P based distributed storage systems use in-

dexes to improve search performance [58, 47, 95]. While indexes improve search performance,

they may make the distributed storage system more vulnerable to DoS attacks [89, 52]. This is

because in a highly dynamic and open P2P system, search indexes may be stored at untrusted

nodes which can be compromised by the adversary. Moreover, the location of these index nodes

cannot be hidden from the adversary. Index-based search systems are therefore vulnerable to the

following types of attacks:

1. File-server attacks: An index server node can be compromised by a malicious adversary

and the adversary can then target specific file-servers because it knows the mapping between a

file and it’s location. This is also called Targeted File Attacks [89].

2. Search-infrastructure attacks: In such an attack, the malicious adversary tampers or de-

stroys the indexes stored at the compromised node thereby decreasing the reliability of the search

scheme.

File-server attacks may be partially prevented using an access-control mechanism where the

indexes are encrypted using a cryptographic key and the key is shared with legal users. However,

encryption alone cannot prevent Search-infrastructure attacks. The reason is that in distributed

index-based search systems (for example in DHT based systems [91, 64]), there is a direct map-

ping between an index and its location (a distributed hash table allows a group of distributed

hosts to collectively manage a mapping between keys and values through the use of distributed

hashing). Therefore, the location of index nodes cannot be hidden from the adversary. Again
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cryptography can be used to enforce access control such that only legal users can generate the

location of the indexes. This however does not ensure the availability of indexes in the face of

random attacks by the adversary. Traditional approaches like replication can enhance availabil-

ity. However the problem with replication in a security context is that even if a single replica is

broken, confidentiality can be compromised.

In this chapter, we outline a Secret Sharing based Search scheme which we call SCUBE.

SCUBE uses Shamir’s secret-sharing to split the location of a file (secret) into shares and generates

file-identifier shares using obfuscation techniques. A file-identifier share and a location-share are

then combined to create an index-share. A (t, s) secret-sharing scheme then requires atleast t of

s shares to regenerate the index (location of a file). In comparison to traditional approaches like

replication, secret sharing has better security guarantees and offers more flexibility. First, it makes

it difficult for an adversary to correlate shares of the same index. Second, it offers the flexibility of

selecting appropriate values of t and s, achieving a tradeoff between security strength and search

performance.

7.2 Access Control using Secret-sharing and symmetric key cryptography

7.2.1 Shamir’s Secret-sharing Scheme

The secret-sharing proposed by Shamir [82] is used to share a secret among a set of participants.

A (t,s)-threshold scheme is a method of sharing a message M among a set of s participants such

that any subset containing atleast t participants can construct the message. In the context of our

fault-tolerant search scheme, the file location is a secret which is split into s shares such that any

subset of atleast t shares is required to regenerate the location. Shamir’s scheme uses Lagrange’s

polynomial interpolation on a field Zp, where p is a prime. The dealer (content-provider in our

case) generates a random polynomial of degree t − 1:

f(x) = a0 + a1x + a2x
2 + · · · + at−1x

t−1 (7.1)

This polynomial is constructed over a finite field Zp and the coefficient is the secret (file-location).

The value of p is public. The other coefficients are randomly selected by the content-provider and

the location-shares are calculated as follows: sharei = (xi, f(xi)), i = 1..s. The secret can then be
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reconstructed as follows:

a0 = f(0) =

t∑

i=1

yi

t∏

j=1,j6=i

−xj

xi − xj

(mod p) (7.2)

The complexity of Lagrange interpolation is O(t log2 t).

7.2.2 Adversary Model

We assume a threat model in which the adversary controls the actions of several adversary

agents. An adversary agent controls the actions of a compromised node. Thus the adversary set

consists of colluding adversary agents. We use terminology from [71] to describe the threat model.

The adversary agents at the compromised nodes can tamper or destroy the file index shares hosted

at these nodes (Active/Internal adversary). We also assume that the adversary can only compro-

mise the index hosting nodes but cannot compromise communication mediums. On the other

hand, the adversary can use packet sniffing on traffic originating at a good node and can there-

fore observe query packets (Passive/External adversary). We assume that the underlying network

layer is secure and the adversary can only observe the query request packets that are addressed to

it during a query lookup. Moreover, the adversary follows the Chord protocols correctly (Routing,

Stabilization, Finger table updates and so on). The adversary can initiate two types of Denial of

Service attacks. The adversary agents at different compromised nodes can tamper the file-index

shares hosted at those nodes thereby breaking the search infrastructure. Moreover, by observing

search queries and issuing bogus queries, an adversary can possibly reduce the size of the set of

possible content providers for a particular file. This can result in targeted file attacks. We assume

that a fraction f of a total of N nodes are compromised and therefore act as malicious nodes.

7.3 Protocol Overview

We first present a general overview of SCUBE. Each file in the storage overlay is associated

with an unique identifier. Search protocols use keywords to search for documents. We assume

that each file’s identifier/keyword is unique which may be semantically attached to the content of

the file. The index of each file is a tuple - {file-identifier, file-location}. The content-provider for a

particular file first generates a virtual address using it’s group key. The concept of virtual address
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has been used in MUTE [77] and is used for obfuscating the actual IP address. This virtual address

is then split into s shares using Shamir’s (t, s) secret-sharing scheme. Thus, even if an adversary

manages to acquire atleast t shares, all it can generate is the virtual address. The virtual address

concept therefore provides a second level of security. To generate the corresponding file-identifier

shares, a keyed-hash function based obfuscation technique is used. This obfuscation of the file-

identifier ensures that it is very difficult for an adversary or group of adversaries to correlate

shares for the same file during a normal search operation. This is applicable to search schemes

in which file identifiers are semantically attached to the file content. Each file-index share is then

generated as {file-identifier share, file-location share} and inserted into the DHT (See figure 7.1

for the protocol steps). A searcher then generates the locations of atleast t untampered shares and

generates the virtual address of the content provider. Finally the searcher generates the correct

IP address of the content-provider by decrypting the virtual address using the group key. One of

the basic requirements of SCUBE is that a searcher must possess the correct group key and must

know the correct file-identifier. This aspect of SCUBE is similar to the concept of location-keys in

LocationGuard [89]. We also assume that it is possible for a searcher to generate the locations of

file replicas once the actual physical address of the file server can be generated.

Thus SCUBE has two levels of defense against malicious entities. First, by obfuscating the file

identifiers and then distributing the shares, it makes it difficult for an adversary to correlate the

shares. Thus it is very difficult for an adversary to regenerate the virtual location of a file. More-

over, by distributing the shares, the availability of indexes is improved. Second, even if the virtual

address is generated by an adversary, it is very difficult to generate the physical address of the file

server without knowing the correct group key. Table 7.3 shows the cryptographic operations used

in SCUBE. The obfuscated file identifiers are 20 bytes in length.

7.4 System Architecture and Implementation

We assume an unstructured P2P based storage overlay with a total of N nodes. To enable

search for files hosted at a node, a DHT based search structure is used. Each file is associated

with a file-identifier which can be a keyword and a file-index is represented by the tuple {file-

identifier,location}. To ensure location privacy, shares of a file-index are generated using the
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K Symmetric group key
N Total number of nodes
f Fraction of malicious nodes
(t,s) Share scheme used
Zp Field used in secret-sharing
EK(x) Pseudo-random function with in-

put x

Table 7.1. Protocol Notations

Protocol step Overhead
Share generation O(st2) {Computational}

O(s) {Cryptographic}
Share distribution O(slogN) {Traffic}
Share gathering O(tlogN) {Traffic}

O(t) {Cryptographic}
File location generation O(1) { Cryptographic }

O(tlogt) {Computational}

Table 7.2. Protocol overhead

secret-sharing scheme and different shares are hashed to different nodes in the DHT. Each node

has a symmetric group key and nodes in the same group have search-access to content hosted in

that group. We leave the discussion on group key management to section 6.5. SCUBE uses the

notations shown in Table 7.1.

7.4.1 Generation of File-index Shares
To ensure location-privacy, each file index is broken into s index-shares of which a minimum

of t shares are required to regenerate the index. Each index share consists of two components:

{fileid-share, location-share}. Figures 7.2 and 7.3 describe the steps of the search scheme.

Generation of Location Shares: The location shares are generated using shamir’s secret-

sharing scheme (see Section 7.2). The location of a file (32-bit ip address of the content-provider) is

encrypted using K to generate a virtual address. Different shares of this virtual address (location-

shares) are then generated using shamir’s scheme.
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Generation of File-identifier and Index Shares: The following procedure is used to generate

file-identifier shares. Let us consider a file with identifier I. Then the jth share of I is represented

as

Ij = EK(I||j), j = 1 · · · s

where || can be a concatenation or any other operation. Thus each share of I is obfuscated using

the pseudo-random function (keyed hash function in SCUBE) with group-key as input. The index-

share is finally generated by a random mix-and-match of the file id and location shares.

Note that each location share generated in the previous step could have been combined with

the file-identifier to generate the index share. This approach is vulnerable to leak of privacy. A

group of colluding adversaries which host different index-shares of the same file can correlate

the shares and gather enough shares to regenerate the virtual address of the file. Therefore the

protocol requires the generation of file-identifier shares also.

7.4.2 Distribution of File-Index Shares
Each share generated in the previous step is then inserted into the DHT using chord routing

protocol. We assume that the file servers are part of the chord ring and they insert the indexes

of their files through trusted proxies or forwarders. To ensure byzantine fault tolerance, there

should be a very low probability of two or more shares getting hashed to the same node. For

a uniformly distributed chord ring, the Birthday Paradox [96] gives the relationship between N

and s for which the aforementioned probability is low. Birthday Paradox states that if s keys are

randomly hashed to N nodes and s = Ω(
√

N), then atleast one of the nodes is likely to store more

than one key. Thus, for a 1000 node network (N=1000), a value of (s < 31) should be selected.

7.4.3 Searching File-Index Shares
Secret-sharing allows any searcher or a group of index-hosting nodes to generate the location

of a file by collecting t or more shares. Thus the IP address of each file is encrypted into a virtual

address. This ensures that only a legal searcher can generate the physical location of a file by

collecting enough shares.
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Cryptographic op. Key used
Virtual address generation 192 bit AES key

Generation of obfuscated file identifiers HMAC-SHA1

Table 7.3. Cryptographic operations

A legal searcher can generate the file-identifier shares using the method described in sec-

tion 7.4.1. After generating s shares, it can initiate search for t or more shares. The search for

each share uses the Chord routing protocol. Thus the average number of hops required for search-

ing a single file is t
2
logN.

7.4.4 Generating File-Location
A legal searcher can determine the file location from the virtual address and atleast t untam-

pered shares are needed to generate the virtual address. Thus a searcher collects a set of t shares

and generates the virtual address. If the address generated is bogus (either the IP address does

not exist or the node with the IP address does not possess the file), the searcher repeats the process

until the correct virtual address is generated.

7.4.5 Illustrative example

Consider a file FILEA and its location ip address as 129.186.141.12. Using the group key, a 32

bit virtual address can be generated as 077EFACD which is used as the secret in the share scheme.

If a (2,4,3) share scheme is used, then the 4 secret shares can be (x1,f(x1)), (x2,f(x2)), (x3,f(x3)) and

(x4,f(x4)). The corresponding obfuscated file identifiers can be AELIF, ILEAF, LEAFI and EAFIL.

Thus the content provider inserts a tuple of the form {AELIF,(x1,f(x1))} into the chord network

for each share. A legal searcher then generates any 3 obfuscated file identifiers say AELIF, ILEAF

and EAFIL and then initiates a search for the corresponding shares. Finally, after downloading the

shares from the index providers, the searcher generates the physical address. Note that the above

values of the shares are only used for illustration purpose and may not reflect actual values.
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7.5 Analyses of Attack Scenarios

In this section, we describe the different possible attack scenarios and how the protocol can

address these attacks. We classify the different attacks into two categories: Infrastructure Attacks

and File-server Attacks. Other DoS attacks like Routing Attacks, Partition Attacks and Storage

and Retrieval Attacks have been addressed in literature [88]. We focus on attacks through which

a set of colluding malicious nodes can make a file unavailable, either by destroying the file itself

or destroying the pointer to the file location.

7.5.1 Search Infrastructure Attacks

A group of colluding adversaries can tamper the file-index shares stored at the compromised

nodes which can break the search infrastructure. The adversary strategy would be to destroy

atleast (s − t + 1) shares of a single file index to make the file index unavailable to a legal searcher.

This is because atleast t shares are needed to regenerate the virtual address of the file server.

The group of colluding adversaries can randomly compromise a set of nodes and tamper the

file-index shares stored at those nodes. A second approach that can be used by adversaries is

to observe queries routed through them and log information about the index providers. Due to

Chord routing properties, an adversary can easily know the identity of the index provider if it is

the predecessor node on the chord ring. Assuming that a group of adversaries gather information

about index providers for queries routed through them, they first need to correlate index shares

of the same file and then compromise the index provider nodes. Note that it is very difficult for

an adversary or group of adversaries to correlate two obfuscated file identifiers as belonging to

the same file. The keyed hash function (HMAC-SHA1) is used to generate the obfuscated file

identifiers. Thus the obfuscated file identifier is a random 160 bit string and it is very difficult to

correlate two random 160 bit strings as transformations of the same file identifier.

Effect of Routing Different queries of the same file identifier can only be correlated by an

adversary if they all have the same initiator. The type of routing used has an effect on the Initiator

anonymity in Chord. In Recursive routing, information about the index provider is returned to

the initiator through the reverse path of the original query and therefore unlike Iterative routing,
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initiator anonymity is not compromised. SCUBE uses recursive routing.

Sybil Attacks In Sybil Attacks [32], an adversary introduces a large number of corrupt nodes

to control certain regions of the chord ring. Targeted node attack [88] is a sybil attack in which the

adversary corrupts certain areas of the identifier circle and this degrades the search performance.

The effect of such localized attacks can be mitigated by placing different shares of the same file

identifier in disparate regions of the chord identifier circle as has been observed in [88].

7.5.2 File-server Attacks

In File-server attacks, the adversaries employ different strategies to detect the location of a file

and attack the file-server nodes. The adversaries can observe and log the queries routed through

them. By observing the query traffic, the adversaries can then try to narrow down the set of

possible initiators of the query and correlate the shares which originate from the same initiator.

Let us assume that a group of adversaries can correlate a set of shares that they have observed and

let p be the probability that an adversary lies on the search path. Then for a (t, s) share scheme,

the probability that the virtual address can be generated (pa) is 1
pt . When a large fraction of nodes

are compromised, a higher number of shares is favorable.

Traffic Analysis Attacks In a Traffic Analysis attack, an adversary observes search traffic gen-

erated in the overlay and a group of colluding adversaries then use this information to correlate

shares of the same query. Since for each file that is searched, atleast t queries are generated at the

initiator, an adversary can use the traffic pattern to correlate shares. Note that SCUBE generates

additional traffic due to the additional number of shares that have to be collected for integrity

checking. One solution to thwart a Traffic Analysis Attack is to flatten the traffic pattern. Thus

instead of generating a burst of traffic, the initiator spreads out the request for the different shares.

A second solution is obfuscating the traffic pattern by Share Mixing. In Share Mixing, shares

from different queries are mixed together in a single burst of traffic from the query initiator. We

refer the reader to [46] for details.

Dictionary Attacks Dictionary attacks [57, 49] use the fact that a file identifier would usually

be a common english word from a restricted vocabulary as found in a dictionary and therefore
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an adversary generates different possible identifiers to search for a file associated with it. SCUBE

uses obfuscated identifiers which can only be generated by a legal searcher. Even if an adversary

manages to figure out the original file identifier, the probability of generating valid obfuscated

identifiers without knowing the group key is very low.

Phrase Attacks A Phrase attack [10] takes advantage of the fact that a file identifier is usually

semantically attached to its content and therefore a query composed of a similar identifier can

release information about the content provider. Again the use of obfuscated identifiers in SCUBE

prevents such attacks. Correlation Attacks An adversary can passively observe search queries

routed through it and store these queries. A group of adversaries can then try to correlate these

queries to have originated from the same initiator. Assuming the correlation is successful, the

adversaries can then issue these queries as bogus queries to generate the virtual address. Finally

the adversaries need to break the encryption to generate the actual location of the file. Note that

a successful correlation attack depends on the ability of the colluding adversaries to correlate a

group of queries from the set of observed queries.

File frequency Attacks File frequency attacks was studied in [89] in the context of read access

on file replicas and an optimum value for the number of replicas was suggested. These attacks

use the property that if file popularity is known to the adversaries, then by observing query traffic

the file location can be deciphered. If file popularity follows a zipf distribution [14], then the

adversaries can try to relate the set of observed queries to a set of files. Note that in the context

of SCUBE, this can help in deciphering the relationship between obfuscated file identifiers for a

particular file and the file itself. We observe that for a (t, s) scheme, as s/t increases, the probability

of a file frequency attack decreases (We refer the reader to [46] for a detailed proof). Other types

of attacks and how SCUBE handles those attacks is also discussed in [46].

7.5.3 Other Passive Attacks

P2P networks are characterized by high churn [76, 51]. Thus it is possible that the malicious

nodes get access to a large set of shares stored at their predecessor nodes. If we assume that the

overlay contains file identifiers for Q files and if f is the fraction of malicious nodes in the network,
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then the probability that a sequence of R searches is successful is atleast {
((1−2f)s

t )
(s

t)
}R (We refer the

reader to [46] for a detailed proof). We observe that churn has an adverse effect on the search

performance. For example, even for a low value of f (0.05), the success probability for a single

search can be as low as 0.8 for a (2,10) share scheme. Over a period of time, a cascading effect can

result in the disruption of the search infrastructure.

One solution to mitigate this adverse effect is Share Regeneration and Distribution. Proactive

Secret-sharing [45] can be used by the file provider to periodically generate new shares and insert

them into the chord overlay. Note that the location of the shares (identifiers on the chord identifier

circle) is still determined by the obfuscation algorithm and is a requirement for a successful search.

Proactive Secret-sharing only helps in regeneration of new shares.

7.6 Experimental Evaluation

We carried out some simulation based experiments to evaluate SCUBE using our discrete event

simulator. A maximum of 1000 nodes were used in our simulations and the BRITE topology

generator [15] was used to generate the physical topology. The topology was generated using

the AS model. We use a chord identifier length of 16 bits. Besides the finger table and other

maintenance structures, each node also maintains a share cache. We used a maximum of 5000

file-index insertions in our experiments. A search query was randomly generated every second

from a node which does not possess the corresponding file. A random fraction of the nodes in

the overlay were selected as malicious nodes with the maximum value being 0.2. To consider the

effect of different sets of adversary nodes in the overlay, we generated different initial overlay

configurations for each experiment.

We first consider the resilience of SCUBE to infrastructure attacks. The primary metric used in

evaluating the DoS resilience of the protocol is Reliability.

Reliability =
No of successful searches
Total number of searches

We vary the fraction of malicious nodes and consider different threshold schemes. In our exper-

iments, we vary the values of t and s (Our choice of values for s and t satisfies the condition

derived in section 7.4.2). An increase in the value of t increases the computational overhead at
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a legal searcher. Moreover, an increase in s and t generates additional traffic during share distri-

bution and share gathering respectively. Since an adversary needs to tamper atleast (s − t + 1)

shares of an index to make it unavailable, an increase in t for given s decreases the search re-

liability. On the other hand, a small value of t increases the probability that the adversary can

correlate shares and therefore launch file server attacks. Figure 7.6 shows the variation of reliabil-

ity with the fraction of malicious nodes for different share schemes. We observe that the reliability

is quite high (about 0.8) even for a large fraction of malicious nodes ( f=0.1). With an increase in

the value of t, reliability drops marginally. This is because the probability of the shares getting

tampered increases. We also study the effect of overlay size on the DoS resistance of the protocol.

Each experiment consisted of several runs to include the effect of different random distributions

of malicious nodes. We assume a linear increase in the number of nodes that are compromised.

Therefore, the fraction of malicious nodes is kept constant for each overlay size. If we consider

the average case, the fraction of the identifier circle covered by the malicious nodes remains the

same and hence there is not much of a variation in the reliability. Figure ?? shows reliability vs.

overlay size plot for f = 0.1 when (2,4) share scheme is used. As the overlay size increases, the

density of nodes on the identifier circle increases and each node then hosts a smaller fraction of

indexes (assuming a constant number of searches). This decrease in the fraction of indexes hosted

by malicious nodes is compensated by an increase in f and hence the number of tampered shares

remains more or less constant.

P2P networks are characterized by dynamic membership because nodes join and leave rapidly.

This results in Churn. Previous studies [51] have shown that a high churn has a significant neg-

ative impact on the performance of protocols. We use simulations to observe how realistic node

join and leave scenarios affect search performance. Our churn model is based on the model pro-

posed in [53]. We vary the join and leave rates of the nodes in our simulations to achieve varying

degrees of churn. Figure 7.4 shows the effect of churn on the search reliability for different sets of

parameters. A churn value of 0 means a static network and a value of 1 means a node join and

leave rate of 1 per second. A 95% confidence interval is used in our plots. We observe that a there

is no significant impact on the reliability at high churn rates. A (2,6) scheme shows a reliability of

almost 1 for f = 0.05 and the reliability marginally drops for a higher fraction of malicious nodes
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# Shares/search 1 2 3 4 5 6
Search time (ms) 710 1500 1922 2800 2942 4196

Table 7.4. Average search time

but does not show significant changes with an increase in churn rate (frequency of node joins and

leaves). We see a similar pattern for a (2,4) scheme.

7.6.1 Search Performance

In Chord, the average number of hops required for searching a key is 1
2
logN. Thus a (t, s)

scheme would require t
2
logN hops on an average. Besides Data-caching, SCUBE also uses Share-

caching to improve the search performance. Each node maintains a share and data cache. A

share cache consists of the most recently downloaded shares and each share is tagged with the

file identifier. We compare the search performance of SCUBE (with share-caching) with Random

scoped flooding [50] which is similar to Gnutella [40]. The number of neighbors for each node

in the overlay is in the range [3,8], according to the original Gnutella protocol. For a given hop-

limit, we plot the number of successful queries that are answered. Figure 7.5 shows the query

success rate for an overlay size of 600. In the simulations the MAX-NEIGHBOR parameter is set

to 8 and the initial SCOPE for each query is set to 5. For small networks, the search performance

of SCUBE is slightly better than flooding and performance improves with a smaller number of

shares. On the other hand, for a large network, SCUBE performs appreciably better than flooding.

For a network with N=600, even a (2,6) share scheme shows an improvement of about 90% over

random flooding. This is because in flooding, search time is O(N) and therefore an increase in the

network size has a linear increase in search time on an average. On the other hand, even with an

increase in the number of shares, search time in SCUBE has a logarithmic increase. We also plot

the search success rate for Chord as a reference. Observe that the use of a single index (as opposed

to shares) would improve the search time but such an approach would not be fault tolerant.
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7.6.2 Implementation of Prototype

We have implemented a prototype of SCUBE and tested it on the PlanetLab [63] testbed. It runs

as an application and consists of about 6000 lines of java code. We use the Apache XML-RPC [1]

library for remote procedure calls. Each node runs a Chord Server and searches are generated

from Chord clients running on two Intel P4 3.2 GHz machines running Linux 2.6.5 and an Intel

Pentium M 1.3 GHz machine running Windows XP. We run a Chord bootstrap node on one of

the aforementioned Intel P4 machines. Each node in the overlay contacts this bootstrap server

to join the network and thereafter stabilizes into the network within a short period of time. The

chord client consists of a graphical user interface to insert file indexes and search files. Due to the

transient nature of nodes on the PlanetLab testbed, we were able to use a small set of relatively

stable nodes. In all our experiments, we used a set of 50 nodes. The PlanetLab Toolkit [2] was used

to generate the scripts for remote execution. To maintain a more or less constant network size, we

monitor the overlay network nodes from time to time and start a chord server on a new node as

soon as any node leaves the network. In each experiment, we randomly select a set of malicious

nodes and vary this number for different sets of experiments. The two primary metrics that we

used in our experiments were Reliability and Search time.

We performed experiments to measure reliability for 2 different share schemes, (2,6) and (2,4).

In each experiment, the chord client generates indexes for about 200 files and inserts them into

the network and then a search is generated for a randomly selected file. Figure 7.7 shows the

variation in reliability with fraction of malicious nodes in the network for two different share

schemes. Similar to our simulation results, we observed that (2,6) share scheme performed better

for high values of f. We also measured the search time for a share based scheme as a parameter to

judge the QoS of the application. We generated a series of random search queries and measured

the average response time of a query. Table 7.4 shows the search time for different number of

shares. For a non-share scheme, the average search time was about 710 ms, while it increased to

about 4196 ms when 6 shares are requested for each search. Thus an user has to wait for about 4

additional seconds when a share scheme is used. We believe that this overhead is acceptable when

reliability of the application is of primary concern. Our current implementation does not include

share-mixing or traffic obfuscation which we plan to do as part of future work.
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7.7 Summary

We have presented a secret sharing based search protocol that uses a DHT-based index struc-

ture to speed up search. SCUBE employs two lines of defense against DoS attacks: (1) It obfuscates

file identifiers and distributes file indexes at different locations in the network to ensure availabil-

ity and integrity such that only an authorized searcher can generate the location of a file; and (2)

it uses virtual address to obfuscate the actual location of a file to ensure confidentiality. We have

analysed the resistance of SCUBE to two broad categories of DoS attacks, search infrastructure

attacks and file server attacks, under different adversarial situations. We have also considered the

effect of churn on the robustness of the protocol and suggested ways in which the performance of

SCUBE can be improved. Our prototype implementation and performance measurements have

shown that SCUBE delivers an acceptable level of search performance. As part of our future work,

we plan to study the robustness of SCUBE under more complicated attack models and to incorpo-

rate a mechanism to detect malicious nodes within the network. We would also like to study the

effect of share re-generation and relocation on search performance.
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Figure 7.1. Protocol Steps: Step1 – The content provider generates the virtual address, Step2
– The virtual file-location is split into shares using secret-sharing, Step3 – File-identifier shares
are generated using an obfuscation technique, Step4 – Random mixing of the file-identifier and
file-location shares and generation of obfuscated file-index shares and Step5 – Insertion of the
index-shares into the Chord DHT
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/* Generate virtual address */
Virtual-address = EK(ip-address)
/* Generate location shares using secret-sharing */
Zp: public, (t,s): public
1. Select coefficients a1,a2...at−1

2. Generate (xi, f(xi)) ∀i = 1..s

/* Generate file identifier shares */
Ij = EK(I||j) ∀j = 1...s

/* Generate index shares */
Randomly mix and match locations shares and
file-identifier shares to generate file-index shares
F1, F2 · · · Fs.
/* Distribute index shares */
Distribute the index shares on the chord ring using
the following API:
for each Fj, j=1...s

PUT(Ij, (xj, f(xj)))

Figure 7.2. Share generation and distribution

/* Collect atleast t index shares */
Searcher generates the file identifier shares (same
procedure as during generation) and initiates search
using the following API:
for each Ij, j=1...t

GET(Ij)
After collecting atleast t untampered shares,
searcher generates the virtual address as follows:
Virtual address = a0 = f(0) {From eqn 7.2}
/* Generate file location */
Ip-address = DK(a0)

Figure 7.3. Share gathering and location generation

Figure 7.4. Variation of reliability with churn rates
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Figure 7.5. Search success rate (hop-limit in logarithmic scale)

Figure 7.6. Reliability vs. share scheme
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CHAPTER 8. Conclusion

• Anonymous data-transfer for large-scale data-intensive applications: We have tried to ad-

dress the issue of anonymity for emerging distributed platforms like grid computing by

proposing a lightweight forwarding protocol. The major challenge for such large scale data

intensive applications is to achieve acceptable degree of anonymity while maintaining a low

overhead. Our proposed protocol uses the inherent trust prevalent in such systems to our

advantage. To the best of our knowledge, this is the first anonymity protocol for grid com-

puting.

• Enhancing anonymity through the use of incentive mechanisms: Peer-to-Peer based anonymity

systems are highly dependent on the participation of peers for achieving a high degree of

anonymity. However, the very open nature of such systems makes it difficult to induce peers

to forward traffic for others. We have tried to address this issue through the use of a game

theory based model to incentivize peer’s participation in the network. Our primary contri-

bution is a model to generate optimal forwarding strategies of peers which is aligned with

increased anonymity.

• Analyzing leak of privacy in structured Peer-to-Peer networks: Structured Peer-to-Peer net-

works use a mapping between a file’s identifier and a node’s location. Thus, lots of in-

formation is stored in routing tables of the peers participating in such networks. We have

developed an entropy-based model to quantify the leak of information from the routing ta-

bles in such networks. We believe that our model can give us insights into the design factors

which affect privacy leaks.

• Enforcing anonymity through access control: In this work, we have tried to address the

vulnerability of DHT based search indexes by proposing a threshold cryptography-based
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access control mechanism. We have also implemented a prototype to demonstrate real world

feasibility of our protocol.
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